首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
基于相似原理和莱钢60 t LF钢包,建立了一套水模拟试验装置,水模型和钢包原型的几何相似比例为1∶4,用该装置进行了钢包底吹氩行为的物理模拟研究.结果表明,底吹气体流量越大,混匀时间越短;吹气流量对混匀时间的影响程度远远大于透气砖位置的影响.60 t钢包适宜采用单透气砖,其硬吹气体流量应>0.133 m3/h,软吹气体流量应<0.02 m3/h.  相似文献   

2.
双底吹对CAS钢包弱搅拌区混匀效果的改善   总被引:1,自引:0,他引:1  
按照1:5相似比建立CAS钢包模型,通过片光源拍照观察流场和电导率仪测定混匀时间,研究双底吹技术对CAS钢包内弱搅拌区混匀特性的改善情况.结果表明双底吹技术能较大程度降低钢包混匀时间,改善弱搅拌区的流场特点,提高钢包中下部的混匀效果.通过无因次分析,得出辅吹气流量Q和浸罩插入深度H对混匀时间影响程度的经验公式:T-T0/T0=0.59Q-0.74(H/HL)0.52.  相似文献   

3.
杨亚迪  赵晶  崔剑征 《特殊钢》2021,42(5):6-10
为增强钢厂180 t钢包底吹氩过程搅拌效果,根据模型设计参数建立了底吹氩数学模型,运用CFD软 件fluent对钢包底吹氩过程流场进行数值模拟。基于流体力学理论,计算并分析了底吹氩过程中心间距1/3R, 1/2R和2/3R和底吹氩气流量300~1000 L/min对钢包内流场、“死区”比例及混匀时间等的影响规律。结果表明在钢包底吹氩过程中,当两透气砖距离钢包底部中心为1/2R,底吹流量为600 L/min时,混匀时间195 s,钢液搅拌效果最佳。  相似文献   

4.
《特殊钢》2017,(4)
以钢厂120 t钢包为研究对象,对相似原理为基础,建立几何比例1:3的水模型,通过测定单、双透气砖最低吹氩条件(透气砖位置,吹气量0.4~2.0 m~3/h等)对混匀时间的影响,确定钢包的底吹工艺。实验结果表明,单孔布置时,透气砖距离钢包0.63R(R为钢包底半径)时混匀时间最短;双孔布置时,增大两透气砖之间的距离有利于缩短混匀时间,双孔180°夹角0.6R布置方式效果最好,混匀时间最短;在等气量下,双透气砖效果明显优于单透气砖。  相似文献   

5.
根据相似原理采用一重130 t、160 t钢包1:5和1:5.5比例的水模型,研究了底吹流量对混匀时间、液面扰动、液面亮圈直径和夹杂物上浮时间等钢包内流体流动特性的影响。结果表明,对130 t钢包加热化渣、脱硫-脱氧、合金化及软吹的最佳吹氩流量(L/min)分别为200、600、400、150;而对160 t钢包则分别为300、500、500、200。  相似文献   

6.
根据相似原理,对兴澄特钢150 t钢包建立几何比例为1∶3的水力学模型,通过测定不同底吹条件下钢包的混匀时间,确定最佳的底部透气砖位置及吹气流量。研究表明:原型双孔吹气方案下混匀效果欠佳,较大气量下气流股会对包衬造成冲刷侵蚀。优化后得到最佳方案为:双孔在1/2 R圆周上,成135°布置,吹气量控制在550~600 L/min,可获得最短的混匀时间为53 s。  相似文献   

7.
采用1:2.5几何相似比的水模型,试验研究了钢厂90 t钢包炉(LF)透气砖位置、数量和底吹供气量对钢包内流体混匀时间的影响。结果表明,优化后的钢包透气砖位于高位料仓下料位置的下方,渣料和合金能够直接加在裸露区,熔化速度快,合金收得率高;底吹气体流量23.89 L/min时钢包流体混匀时间最短,有利于钢水深脱硫。  相似文献   

8.
混匀是衡量钢包底吹氩精炼冶金效果的重要指标,优化底吹氩工艺来促进混匀是钢包精炼研究的核心内容。首次提出采用双孔对称交替底吹气的方式来增强搅拌、促进混匀,采用几何相似比为1∶4的水模型,模拟现场吹气量为300L/min,对150t钢包交替吹气位置0.1R~0.5R、交替吹气时间0~15s进行研究。结果表明,随着交替吹气时间的增加,混匀时间先增加后减少;随着底吹气孔与钢包中心距离的增大,混匀时间先减少后增加;底吹气孔与钢包中心的距离为0.3R时,混匀时间最短;交替时间为15s时,混匀时间最短,比不交替吹气缩短5.5%。  相似文献   

9.
通过建立1∶5水模型对某厂210 t钢包底吹过程流场、混匀时间和渣眼分布进行了研究,讨论对比了不同钢包底部吹气流量、吹气位置和吹气孔夹角的影响。结果表明,吹气孔径向位置越靠近壁面,钢包内流体流动速度越大。混匀时间整体上随着吹气流量的增大而减小,并且在小吹气流量情况下混匀时间下降幅度较大,而在大吹气流量情况下混匀时间下降幅度较小;吹气孔间夹角不变时,混匀时间随着吹气位置离钢包中心的距离增加而减小;大吹气流量下吹气孔间的夹角的变化对钢包内流体混匀时间影响较小;通过不同吹气孔径向位置及夹角流场PIV测量及混匀时间试验得出的最佳吹气分布位置为(0.80R,0.80R,110°)。相较于吹气孔位置的影响,吹气流量是决定渣眼面积大小的关键因素。渣眼面积随着吹气流量的增大而增大,但当吹气流量大于12.6 L/min后,渣眼面积的变化趋于平缓。  相似文献   

10.
采用几何相似比1:3水模型,对250 t钢包底吹氩位置优化进行模拟试验,用电导法测定了单孔喷吹、双孔夹角90°和180°对称喷吹在至钢包中心不同距离处(0.37~0.61 R)采用不同吹气量(5~25 m3/h)时钢水的混匀时间。试验结果表明,单孔底吹氩,吹孔距钢包底部中心0.61 R(R为钢包底部半径)时混匀时间最短;双孔喷吹对称分布的混匀时间比单孔喷吹的混匀时间短;当双孔喷嘴0.61 R对称分布时,混匀时间最短,死区最小,且双孔喷嘴间距由0.37 R增至0.61 R时混匀时间明显减小。  相似文献   

11.
以钢厂40t LF为原型,应用广义相似理论进行1:3水力学模拟实验研究。根据白金汉π定律,得到描述底吹氩钢包内钢液混合效果的特征数方程模型。通过对实验数据回归分析,得出几何相似的钢包炉内钢液受搅拌后混合效果的特征数方程。同时,使用ANSYS CFX软件对原吹气孔及单孔、双孔最佳吹气位置进行数值模拟验证。研究结果表明:钢包吹气位置设在距炉底圆心2/3R处和单孔吹气,钢液混匀时间最短,钢包流场活跃区最大。  相似文献   

12.
为了优化国内某钢厂钢包的底吹位置和气体流量等工艺参数,更好地提高钢水洁净度,对120 t钢包建立1∶3水模型,模拟研究了底吹位置和气体流量对钢液混匀时间和钢渣覆盖情况的影响。结果表明,底吹位置不同时,混匀时间存在明显差异;随着气体流量增大,钢包混匀时间整体呈下降趋势,但减小幅度越来越小,吹气流量有最佳值;底吹位置为0.4R-0.6R,气体流量为500~700 L/min时,混匀时间由大到小的双孔角度为双孔135°>双孔90°≥双孔120°;相同吹气量条件下单孔透气砖布置比双孔透气砖引起的钢渣卷入深度更大,深度差距基本为20~70 mm,而引起的渣眼面积大小则为双孔大于单孔。综合考虑混匀时间和钢渣覆盖情况,最优的透气砖布置和工况参数为双孔120°-0.4R-0.6R、气体流量500~600 L/min。  相似文献   

13.
王庆 《山东冶金》2010,32(3):40-41,44
应用欧拉-欧拉模型建立了钢包内钢液流动及混合过程的数学模型,考察了吹气量对中心底吹及偏心底吹钢包内流场及均混时间的影响。计算结果表明,钢包底部四周为流动缓慢区域;吹气量越大,一方面可以降低均混时间,另一方面会导致钢包自由液面的钢液流速增大,从而容易造成卷渣;从缩短混合时间,提高生产效率考虑,偏心底吹更为有利。  相似文献   

14.
采用几何相似比1:1的水模型对100 kg中频感应炉底吹氧的工艺参数(底吹流量0.2~0.56 m3/h,熔池高度120~330 mm)和流场进行模拟试验。结果表明,底吹熔池内形成的气相流速度在竖直方向上变化不明显,而在水平方向上存在较大梯度;随熔池高度和底吹流量的增加,气相流速度梯度变大,竖直气-液两相流变为倾斜向上运动;在熔池高度H小于240 mm、气体流量Q小于0.56 m3/h时,混匀时间分别随熔池高度和底吹流量的增加而减小,超过这一范围后混匀时间变化不明显。  相似文献   

15.
靳宇  崔衡  张建伟 《中国冶金》2019,29(4):17-21
为了提高RH精炼效率,缩短精炼时间。以某钢厂150 t RH真空精炼装置为原型,建立相似比为1∶4的水模型,研究底吹孔个数与底吹流量的影响。结果表明,实施底吹工艺后,RH循环流量和混匀时间相较无底吹时都有明显改善。相同底吹流量情况下,单孔底吹对循环流量提升效果明显优于双孔底吹工况,如当底吹流量为90 L/min时,单孔底吹工况相较于无底吹工况循环流量增加34%,而双孔底吹工况只增加13%。底吹流量小于90 L/min时,单孔底吹和双孔底吹工况下混匀时间相差不大。底吹流量大于90 L/min时,双孔底吹工况下混匀时间反而有所增加。建议生产现场采用单孔底吹工艺,如采用双孔底吹工艺时,底吹流量应小于90 L/min。  相似文献   

16.
秦哲  朱梅婷  成国光  张鉴 《特殊钢》2010,31(5):18-21
根据相似理论,以钢厂80 t单嘴精炼炉1:4的水模型模拟了单嘴精炼炉内气泡行为,分析了吹气流量(2~10 L/min)、吹气塞直径(15~30 mm)对气泡行为、混匀时间的影响。水模拟结果表明,随吹气流量增加,混匀时间减少,但吹气流量≥6 L/min,混匀时间没有显著变化;在相同吹气量下,吹气塞直径增加,混匀时间减少。实验研究基础上,在80 t单嘴精炼炉上进行了超低碳钢的生产试验,结果表明单嘴精炼炉在18 min脱碳时间内,钢中碳含量可降到10×10-6;脱硫剂消耗4 kg/t的情况下,成品钢中S含量为(20~30)×10-6,脱硫率平均达49%;吹氩强度平均为4 L/(t·min),是相同吨位RH的25%。  相似文献   

17.
基于富氧顶吹直接炼铅技术,提出硫化铅精矿搭配硫尾矿渣炼铅工艺,以实现硫尾矿渣的综合利用。熔炼过程渣型决定了炉渣的性质,进而影响熔炼过程能否顺利进行。根据熔炼过程渣相组成特点,以PbO-FeO-Fe2O3-SiO2-CaO-ZnO渣系为研究对象,采用FactSage热力学软件计算并绘制该渣系相图。研究温度、w(Fe)/w(SiO2)、w(CaO)/w(SiO2)及ZnO质量分数等因素对炉渣熔化温度及液相生成区的影响。理论研究表明,w(CaO)/w(SiO2)的变化对炉渣熔化温度的影响与w(Fe)/w(SiO2)不同,且w(CaO)/w(SiO2)影响更为显著。炉渣中ZnO质量分数在6%~14%范围内增大时,炉渣的熔化温度变化较小;但当ZnO质量分数进一步增大时,炉渣的液相区逐步减小。在保证熔炼过程顺利进行的前提下,渣中ZnO的质量分数可控制在8%~10%范围内,有利于增大炉渣的液相区面积。验证试验表明,在熔炼温度为1 150 ℃、w(CaO)/w(SiO2)= 0.3、w(Fe)/w(SiO2) =0.8条件下,采用富氧顶吹熔炼处理硫化铅精矿搭配硫尾矿渣可顺利进行,熔炼过程金属直收率为8%,渣中铅质量分数可达49.12%,烟尘率为13.18%。  相似文献   

18.
Abstract

The fluid flow and mixing characteristics in the bath during the argon–oxygen decarburisation (AOD) process have been investigated on a water model of an 18 t AOD vessel blown through two annular tube type lances of constant cross-sectional area. The geometric similarity ratio between the model and its prototype (including the lances) was 1 : 3. Based on theoretical calculations of the parameters of the gas streams in the lances, the gas blowing rates used for the model were determined fairly precisely. Thus, sufficiently full kinematic similarity between the model and its prototype was ensured. The influence of the gas flowrate and the angle included between the two lances was examined. The results demonstrated that the liquid in the bath underwent vigorous circulatory motion during blowing, and there was no obvious dead zone in the bath, resulting in excellent mixing and a short mixing time. The gas flowrates, particularly that of the main lance, had a key influence on these characteristics. However, the gas jet of the sublance had a physical shielding effect on the gas jet of the main lance, and mixing efficiency could be improved by a suitable increase in the gas blowing rate of the sublance. The angular separation of the two lances also had a marked influence on the flow and mixing in the bath. An excessively large or small separation of the two lances would reduce the stability of blowing and would also be unfavourable to mixing. The optimum range of separation is 60–100° under the conditions of the present work. The relationships between the mixing time and the gas blowing rate, the stirring energy, the modified Froude numbers for the main lance and sublance, the lance arrangement, etc. have been obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号