首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 128 毫秒
1.
郭云喜  张洁 《机械》2012,39(8):18-21
在分析经验模态分解端点效应出现原因的基础上,采用BP和径向基函数神经网络预测法对端点效应进行研究.在实验中,通过延长信号的采样时间,使端点的数据延长,从而抑制EMD分解时产生的端点效应.同时为了比较两种数据延长方法的效果,分别将延长后的数据进行EMD分解.实验结果表明,这两种都可以有效抑制端点效应对分析结果产生的影响,提高经验模态分解的效果.  相似文献   

2.
经验模态分解(empirical mode decomposition,简称EMD)的端点效应使得EMD分解结果产生严重失真,为了减小端点效应在分解过程中产生的影响,将混沌序列模型引入EMD,提出采用Volterra模型解决分解中产生的端点效应问题。论述了基于Volterra模型的数据延拓技术原理,即先对原始数据进行Volterra建模,然后利用该模型对数据进行延拓。该方法使端点处的延拓更加合理,从而使得三次样条曲线在端点处不会发生大的摆动,实现了准确的EMD分解。通过对仿真信号的研究表明,延拓抑制了分解的端点效应。把该技术应用于转子横向裂纹振动信号的EMD分解中,取得了良好效果。  相似文献   

3.
孟宗  闫晓丽  王赛 《中国机械工程》2015,26(14):1920-1925
针对神经网络延拓方法在抑制经验模态分解的端点效应时存在的延拓数据与真实数据往往存在误差的问题,提出了一种基于HMM校正的方法来减小预测延拓数据误差。首先利用径向基函数(RBF)神经网络预测估计方法对部分原始数据进行估计,同时对端点外数据进行预测。然后计算该方法估计的数据与真实数据的误差序列,再用HMM方法建立估计误差序列模型,用以预测延拓后数据的误差。最后用RBF神经网络延拓数据减去HMM预测的误差数据得到新的校正后延拓数据。仿真与实验证明了将HMM预测方法与RBF神经网络数据延拓结合应用到解决端点效应的过程中所得到的延拓数据更接近真实数据,能够更好地解决端点效应问题,提高了经验模态分解精度。  相似文献   

4.
EMD方法基于径向基神经网络预测的数据延拓与应用   总被引:3,自引:0,他引:3  
胡劲松  杨世锡 《机械强度》2007,29(6):894-899
把基于径向基神经网络(radbas function,RBF)预测的数据延拓技术引入经验模态分解(empirical mode decomposition,EMD)时频分析领域,论述基于RBF神经网络预测的数据延拓技术原理,通过对非线性仿真信号基于RBF神经网络预测延拓研究表明,该延拓技术是有效的,并且把该延拓技术应用于转子横向裂纹的时频分析,获得良好的效果.该研究成果能广泛用于信号时频分析领域.  相似文献   

5.
为提高时间序列预测模型精度,根据各本征模态函数(intrinsic mode function,简称IMF)序列的变化特点,针对EMD-RBF神经网络隐含神经元数目及其中心数据选取问题,利用经验模态分解(empirical mode decomposition,简称EMD)的信号自适应处理能力和径向基函数(radical basis function,简称RBF)神经网络的非线性逼近能力,提出了一种基于EMD与RBF神经网络的混合预测方法。该方法将具有类似时频特性的本征模态函数分别建立RBF神经网络预测模型,采用基于统计分析的k-均值聚类方法自适应确定RBF模型参数,最后将各IMF-RBF神经网络预测结果进行重构得到最终预测结果。仿真结果表明,该方法充分考虑到各IMF本身的特性,增强了时序的可预测性,预测性能比传统反向传播(back propagation,简称BP)神经网络和小波BP神经网络更优越。将该方法应用在某装备温控系统性能监测中,其温度参数最大预测误差远小于传感器误差,说明将该方法在该装备故障预测中是可行的。  相似文献   

6.
《机械传动》2013,(3):83-87
基于经验模态分解的希尔伯特-黄变换分解会产生端点效应,现已提出了诸多的端点效应抑制方法。首先引入了端点效应问题,介绍了镜像延拓法、平行延拓法、极值延拓法、多项式拟合延拓法原理;提出延拓方法评价指标,采用仿真信号对四种抑制方法进行了对比分析,得出镜像延拓法是相对最优的处理方法;采用基于4种端点延拓方法改进的经验模态分解方法对凯斯西楚大学轴承故障数据依次进行处理;最终通过仿真分析与实例故障诊断均验证了镜像延拓法在解决端点效应问题方面的相对最优性。  相似文献   

7.
新型经验模式分解端点效应消除方法   总被引:9,自引:0,他引:9  
对经验模式分解(Empirical mode decomposition, EMD)的端点效应进行深入分析,指出现有延拓方法的不足,对基于正弦函数延拓的方法进行改进,分析不同的延拓周期、延拓信号长度及信号端点值对EMD分解的影响,并与镜像延拓EMD分解方法进行了分析比较。在此基础上,提出一种基于指数正弦型延拓方法的EMD分解,它从原理上减小了延拓信号端点包络线的发散程度,从而提高了EMD分解精度和速度,并对其进行了仿真分析。研究结果表明,新的延拓方法优于传统的延拓方法,能较好地抑制EMD端点效应。  相似文献   

8.
经验模态分解(EMD)作为一种非常灵活的自适应时频分析方法,已广泛用于旋转机械故障诊断中的振动信号分析。但是,经验模态分解存在两个问题:端点效应以及模态混叠。针对EMD中存在的端点效应问题,在积分延拓局部均值分解(IELMD)的基础上,提出了一种利用波形平均来改进IELMD的方法。该方法利用一组相似波形来代替最佳匹配波形与特征波形相匹配,通过对相似波形左边或右边波形取平均得到延拓波形,将其附加在原始信号左端或右端。仿真和应用结果表明,与IELMD方法相比,该方法能够更有效地抑制经验模态分解端点效应。  相似文献   

9.
HILBERT-HUANG变换端点效应处理新方法   总被引:14,自引:1,他引:14  
HIBERT-HUANG变换(HHT)实现过程中,对信号进行经验模态分解(Empirical mode decomposition,EMD)和对分解得到的各个本征模函数(Intrinsic mode function,IMF)进行HILBERT变换时都会产生端点效应.对此问题,采用波形特征匹配延拓数据,提高经验模态分解精度,有效地抑制HILBERT变换中的端点效应,获得准确的HILBERT时频谱.所延拓数据兼顾原始信号中的极值点及非极值点的波形数据,使延拓数据特征与原信号一致,在HHT变换实现过程中仅需一次延拓,算法简单.仿真计算和转子系统故障试验分析结果表明,所用方法可以有效解决HHT变换的端点效应问题.  相似文献   

10.
HHT端点效应的最大Lyapunov指数边界延拓方法   总被引:6,自引:2,他引:6  
针对HHT(Hilbert-Huangtransfrom)的端点效应问题,提出基于最大Lyapunov指数预测模型的HHT边界延拓方法.该方法通过相空间重构,并利用时间序列相似点的演化行为,采用最大Lyapunov指数预测模型来对时间序列的端点进行预测,有效避免了不同边界条件的三次样条插值和Hilbert变换频谱泄露对...  相似文献   

11.
采用经验模态分解对简支梁振动信号进行分解,对分解得到的前4个固有模态函数分别求其能量百分比,并作为神经网络的输入向量.用17种工况的8组样本训练了简支梁故障诊断的神经网络模型.应用该法结果表明,2组测试样本的测试结果均与实际状况相一致,故可检测出结构的故障、故障的类型和故障的位置.  相似文献   

12.
结合端点效应的产生机理和关于端点效应的现有研究成果,提出了一种基于Kriging预测模型的抑制EMD端点效应的新方法.通过计算信号及其包络线的最优线性无偏预测,将信号的上、下包络线进行延拓,从而最大化地逼近原始信号两端点,并将未延拓的分解结果、基于镜像延拓法得到的结果和基于Kriging预测延拓法得到的结果进行对比分析.仿真算例和试验结果表明,基于Kriging预测模型的延拓方法抑制EMD端点效应的效果最优,能够精确反映信号特征,有利于准确提取结构的模态参数,提高运算效率.  相似文献   

13.
提出了基于经验模态分解的瞬时相位分析的新方法。通过对振动信号作经验模态分解得到信号的固有模态函数,再求出各个固有模态函数的Hilbert变换,得到信号的瞬时相位.通过瞬时相位的傅里叶分析就可提取信号特征。介绍了该方法的基本原理,并应用于齿轮箱轴承的故障诊断研究,通过选取表征轴承故障的固有模态函数进行瞬时相位和傅里叶分析,就可提取轴承故障振动信号的特征。通过对轴承故障实验信号的分析.表明该方法能有效地诊断轴承的故障。  相似文献   

14.
基于极值符号序列分析的EMD端点效应处理方法   总被引:1,自引:0,他引:1  
针对经验模式分解(empirical mode decomposition,简称EMD)的端点效应提出一种新的抑制方法。考虑到极值序列在EMD分解的包络线形成中占有主导地位,将信号局部极值序列进行符号化,根据符号特征进行特征匹配,在信号两端依据符号序列特征匹配结果进行符号序列拓延与对应信号还原,对拓延还原后的信号进行EMD分解以实现端点效应抑制。所提方法对于随机信号与周期信号都有着明显的抑制效果,通过对仿真信号和轴承故障信号端点效应的分析验证了方法的正确性。研究与ARMA模型、BP神经网络、镜像拓延等常见方法进行了对比,所提方法的各分量有效值指标均值为19.64%,低于其他方法,说明对低频分量有着更好的抑制效果。  相似文献   

15.
为了将经验模态分解(empirical mode decomposition,简称EMD)用于在线信号处理,提出了实时EMD实现方法,即重叠处理-均值继承经验模态分解.该方法通过信号分段、重叠处理、均值继承和中点拼接等技术,实现了对在线信号的动态、连续、快速和高精度处理.仿真信号和实际测试信号算例验证了该方法的可行性和有效性.  相似文献   

16.
基于经验模态分解的转子启动波德图绘制   总被引:1,自引:1,他引:1  
提出利用经验模态分解的方法来绘制转子启动的波德图。此波德图能够准确地体现转子启动的动态信息,从而克服了手工绘制波德图时由于间断采样使得数据在临界转速不准确的缺点。同时,针对经验模态分解的边缘效应,采用了一种基于等斜率的新方法,即增加极值点的斜率和临近极值点的斜率相等,与其它的边缘值处理方法相比较,该方法不仅利用了信号的内部特征,而且拥有计算简单的优点。  相似文献   

17.
基于RBF神经网络的三角网格曲面孔洞修补   总被引:5,自引:2,他引:5  
针对由测量数据重建得到的三角网格曲面存在孔洞的问题,提出了一种基于径向基函数(RBF)神经网络的修补方法.该方法首先检测出孔洞,通过对孔洞特征多边形实施三角化获得新增三角片顶点;在孔洞边界周围采集三角片顶点,将其作为样本点集来训练RBF网络;将训练好的RBF网络用于新增三角片顶点坐标的优化,最终实现孔洞的修补.修补实例表明,该算法对流形曲面上封闭孔洞的修补精度较高,修补效果良好.  相似文献   

18.
针对直线超声电机的精密位置控制,提出了一种基于径向基神经网络的自适应控制机制。鉴于直线超声电机工作原理,其运行状态必然受到摩擦、强非线性和时变等不确定性因素的干扰,为了对这些不确定性因素进行有效的逼近,采用了径向基神经网络。为了提高控制机制的自适应能力,首先利用来自试验数据的训练样本按正交最小二乘算法确定径向基神经网络的隐层单元的个数和相关参数,再按递推最小二乘法在线调整隐层与输出层之间的权重。试验结果表明,基于径向基神经网络的自适应控制器的性能不仅优于传统的PID控制和误差反向传播神经网络控制,而且具有很好的抗干扰能力。  相似文献   

19.
EMD方法在烟机摩擦故障诊断中的应用   总被引:3,自引:0,他引:3  
提出了一种将经验模式分解(Empirical Mode Decomposition,简称EMD)方法与传统信号处理技术相结合的故障诊断方法。首先将原始信号分解为若干基本模式分量(Intrinsic Mode Functions,简称IMFs),通过希尔波特变换得到每个IMF相应的瞬时频率,再对此瞬时频率曲线做傅里叶变换得到其频谱图,该频谱图即表示了对应IMF的调频频率。利用对应IMF组合成基于EMD的滤波轴心轨迹,这种轴心轨迹可以准确反映轴心的实际运行状况。将该方法应用于某炼油厂烟机摩擦故障诊断中,发现摩擦故障信号具有有色噪声分量存在、工频IMF的调频现象和基于EMD轴心轨迹的反转现象等特征。结果表明提出的方法在旋转设备摩擦故障诊断中非常有效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号