首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have studied the photoluminescence properties of GaN quantum dots with submicrometre lateral resolution by means of near-field scanning optical microscopy. The instrument operated at room temperature and was implemented for near-ultra-violet spectroscopy in the illumination-mode configuration. The analysed sample consisted of several stacked planes of GaN/AlN quantum dots grown by molecular beam epitaxy on Si(111) substrate. The photoluminescence maps showed islands in the micrometre range emitting at different wavelengths, confirming the atomic force microscopy studies on the morphology of similar uncapped samples.  相似文献   

2.
We solve numerically the three-dimensional vector form of Maxwell's equation for the situation of near-field excitation and collection of luminescence from a single quantum dot, using a scanning near-field optical fibre probe with sub-wavelength resolution. We highlight the importance of polarization-dependent effects in both the near-field excitation and collection processes. Applying a finite-difference time domain method, we calculate the complete vector fields emerging from a realistic probe structure which is in close proximity to a semiconductor surface. We model the photoluminescence from the quantum dot in terms of electric dipoles of different polarization directions, and determine the near-field luminescence images of the dot captured by the same probe. We show that a collimating effect in the high index semiconductor significantly improves the spatial resolution in the excitation–collection mode. We find that the spatial resolution, image shape and collection efficiency of near-field luminescence imaging strongly depend on the polarization direction as represented by the orientation of the radiating electric dipoles inside the quantum dot.  相似文献   

3.
We solve numerically the three-dimensional vector form of Maxwell's equation for the situation of near-field excitation and collection of luminescence from a single quantum dot, using a scanning near-field optical fibre probe with subwavelength resolution. We highlight the importance of polarization-dependent effects in both the near-field excitation and collection processes. Applying a finite-difference time domain method, we calculate the complete vector fields emerging from a realistic probe structure which is in close proximity to a semiconductor surface. We model the photoluminescence from the quantum dot in terms of electric dipoles of different polarization directions, and determine the near-field luminescence images of the dot captured by the same probe. We show that a collimating effect in the high index semiconductor significantly improves the spatial resolution in the excitation-collection mode. We find that the spatial resolution, image shape and collection efficiency of near-field luminescence imaging strongly depend on the polarization direction as represented by the orientation of the radiating electric dipoles inside the quantum dot.  相似文献   

4.
A near-field optical microscope has been developed for operation at low temperature. This microscope is used to study the photoluminescence of CdTe-based quantum dots. Spectra collected upon approaching the optical tip into the near-field region of the sample reveal the evolution from a broad far-field luminescence band − that is typical for a large ensemble of dots − to a near-field structure made up of a few sharp peaks originating from individual dots. Experiments carried out in the excitation-collection mode through the optical tip allow study of the effect of an increase in excitation power on the near-field spectra. It is found that upon increasing the excitation by two orders of magnitude, a spatially resolved spectrum progressively transforms back into a broad 'far-field-like' spectrum. Photoluminescence images taken by scanning the sample under the tip are used to discriminate various contributions coming from individual dots.  相似文献   

5.
An improved Fourier transform infrared spectroscopy approach adapting to photoluminescence and electroluminescence measurements in mid-infrared has been developed, in which diode-pumped solid-state excitation lasers were adopted for photoluminescence excitation. In this approach, three different Fourier transform infrared modes of rapid scan, double modulation, and step scan were software switchable without changing the hardware or connections. The advantages and limitations of each mode were analyzed in detail. Using this approach a group of III-V and II-VI samples from near-infrared extending to mid-infrared with photoluminescence intensities in a wider range have been characterized at room temperature to demonstrate the validity and overall performances of the system. The weaker electroluminescence of quantum cascade lasers in mid-infrared band was also surveyed at different resolutions. Results show that for samples with relatively strong photoluminescence or electroluminescence out off the background, rapid scan mode is the most preferable. For weaker photoluminescence or electroluminescence overlapped with background, double modulation is the most effective mode. To get a better signal noise ratio when weaker photoluminescence or electroluminescence signal has been observed in double modulation mode, switching to step scan mode should be an advisable option despite the long data acquiring time and limited resolution.  相似文献   

6.
For laser spectroscopy at variable temperatures with high spatial resolution a combined scanning near‐field optical and confocal microscope was developed. Rhodamine 6G (R6G) dye molecules dispersed on silver nano‐particles or nano‐clusters were investigated. For optical excitation of the molecules, either an aperture probe or a focused laser spot in confocal arrangement were employed. Raman spectra in the wavenumber range between 300 cm?1 and 3000 cm?1 at room temperatures down to 8.5 K were recorded. Many of the observed Raman lines can be associated with the structure of the adsorbed molecule. Intensity fluctuations in spectral sequences were observed down to 77 K and are indicative of single molecule sensitivity.  相似文献   

7.
Quasi-two-colour femtosecond pump and probe spectroscopy and near-field scanning optical microscopy are combined to study the carrier dynamics in single semiconductor nanostructures. In temporally, spectrally and spatially resolved measurements with a time resolution of 200 fs and a spatial resolution of 200 nm, the non-linear change in reflectivity of a single quantum wire is mapped in real space and time. The experiments show that carrier relaxation into a single quantum wire occurs on a 100 fs time scale at room temperature. Evidence is given for a transient unipolar electron transport along the wire axis on a picosecond time and 100 nm length scale.  相似文献   

8.
Time and wavelength resolved spectroscopy requires optical sources emitting very short pulses and a fast detection mechanism capable of measuring the evolution of the output spectrum as a function of time. We use table-top Ti:sapphire lasers and a free-electron laser (FEL) emitting ps pulses as excitation sources and a streak camera coupled to a spectrometer for detection. One of the major aspects of this setup is the synchronization of pulses from the two lasers which we describe in detail. Optical properties of the FEL pulses are studied by autocorrelation and electro-optic sampling measurements. We discuss the advantages of using this setup to perform photoluminescence quenching in semiconductor quantum wells and quantum dots. Carrier redistribution due to pulsed excitation in these heterostructures can be investigated directly. Sideband generation in quantum wells is also studied where the intense FEL pulses facilitate the detection of the otherwise weak nonlinear effect.  相似文献   

9.
The construction of a helium cryostat with pumping of 3He vapors designed for optical measurements with a high spatial resolution in the temperature range 0.45–4.20 K. The cryostat is equipped with four windows made from fused silica. A studied sample is mounted inside a reservoir filled with liquid 3He in a holder minimizing the influence of both vibrations and thermal drifts and can stay in the chamber at T = 0.45 K for >20 h. The cryostat was used to study photoluminescence of GaAs/AlGaAs semiconductor heterostructures. It was revealed that, in a structure with two tunnel-coupled GaAs quantum wells with a width of 120 ?, the threshold pumping power required for the appearance of a narrow spectral line, which corresponds to the Bose condensate of spatially indirect dipolar excitons, decreases by a factor of 6, as the temperature falls from 1.50 to 0.45 K. In a sample with a single wide (250 ?) GaAs quantum well, the distribution patterns of the luminescence of dipolar excitons inside a 5-μm circular potential trap were obtained at T = 0.45 K. The spatial resolution of the distributions is no worse than 1.5 μm.  相似文献   

10.
Using density operator formalism, we discuss interdot excitation energy transfer dynamics driven by the optical near‐field and phonon bath reservoir, as well as coherent excitation dynamics of a quantum dot system. As an effective interaction between quantum dots induced by the optical near‐field, the projection operator method gives a renormalized dipole interaction, which is expressed as a sum of the Yukawa functions and is used as the optical near‐field coupling of quantum dots. We examine one‐ and two‐exciton dynamics of a three‐quantum dot system suggesting a nanometric photonic switch, and numerically obtain a transfer time comparable with the recent experimental results for CuCl quantum dots.  相似文献   

11.
Erni R  Browning ND 《Ultramicroscopy》2007,107(2-3):267-273
Valence electron energy-loss spectroscopy (VEELS) performed in a monochromated scanning transmission electron microscope was used to measure the energy gaps of individual quantum dots (QDs). The gap energies of a series of CdSe QDs measured by VEELS reveal the expected quantum confinement effect; the gap energy increases with decreasing particle size. However, the values derived from these first VEELS measurements of single QDs are larger than the values commonly measured by optical spectroscopy. As standard optical methods lack the spatial resolution to probe individual nanoparticles, the particle-size distribution influences the optical response. It is suggested that the impact of the particle-size distribution accounts for the discrepancy between the energy-gap values derived from VEELS of single QDs and from optical methods of ensembles of QDs.  相似文献   

12.
We obtained scanning near‐field optical microscopy images to study the excitation of surface plasmons on metallic dots fabricated using scanning probe lithography. Gold nano‐dots were fabricated by applying electric voltages to conducting probes installed in an atomic force microscope using the mechanism of field‐induced diffusion and nano‐oxidation plus Au‐coating. High spatial resolution of scanning near‐field optical microscopy revealed a ‘bifold’ pattern of surface plasmon mode on fabricated Au dots in the polarization direction of incident light. We found that scanning near‐field optical microscopy imaging combined with scanning probe lithography is able to provide a systematic study of surface plasmon excitation on nano‐metallic structures.  相似文献   

13.
14.
We have developed a highly sensitive integrated capacitance bridge for quantum capacitance measurements. Our bridge, based on a GaAs HEMT amplifier, delivers attofarad (aF) resolution using a small AC excitation at or below k(B)T over a broad temperature range (4-300 K). We have achieved a resolution at room temperature of 60?aF/√Hz for a 10 mV ac excitation at 17.5 kHz, with an improved resolution at cryogenic temperatures, for the same excitation amplitude. We demonstrate the utility of our bridge for measuring the quantum capacitance of nanostructures by measuring the capacitance of top-gated graphene devices and cleanly resolving the density of states.  相似文献   

15.
针对不同激光波长激发测试样品所需拉曼光谱范围的差异性问题,同时为了保证拉曼光谱仪的小型化及高分辨率需求,提出一种以Czerny-Turner光路结构为基础的微型拉曼光谱仪,通过Zemax光学设计软件对光谱仪的准直镜、聚焦镜、柱面镜、光栅以及CCD的倾角及距离进行了优化。该仪器激光波长为633 nm,光谱范围为640~800 nm。进一步优化光栅旋转角度并配合聚焦镜,可使此光学系统同时适用于激光波长532 nm、光谱范围540~650 nm和激光波长785 nm、光谱范围790~1 000 nm两个波段。拉曼光谱仪分辨率为0.1 nm,该光谱仪在保证高分辨率的情况下解决了不同波段范围光学结构差异性大而导致光机设计很难整合在一起的问题。  相似文献   

16.
GaAs (110)衬底上生长GaAs外延层时,不同生长条件下存在单层和双层两种生长模式,对应反射高能电子衍射(RHEED)强度振荡呈现出单双周期的变化。通过透射电子显微镜(TEM)、室温和低温光荧光谱(PL谱)对两种生长模式下的样品进行了测量。结果表明,量子阱样品在双层生长模式下光学性能较差,单层生长模式下光学性能比较好,但是量子阱界面会变得粗糙。利用这一特点,采用RHEED强度振荡技术,能够实现在GaAs(110)衬底上生长高质量量子阱。  相似文献   

17.
We have detected the light emitted from an STM at both ultraviolet (9·5 eV) and optical (1–4 eV) energies. We show that this light contains spectroscopic information on the sample surface comparable to conventional inverse photoelectric spectroscopy, but with nearly atomic spatial resolution. At optical energies we found sufficiently high intensities to allow spatial imaging of the emission probability. We propose that the high quantum efficiency is due to resonance phenomena, and present fluorescence spectra of the emitted light that support this view. We believe that atomic resolution inverse photoemission microscopy and spectroscopy will provide an important new dimension to surface studies.  相似文献   

18.
Excitons in a GaAs quantum wire were studied in high-resolution photoluminescence experiments performed at a temperature of about 10 K with a spatial resolution of 160 nm and a spectral resolution of 100 µeV. We report the observation of quasi-one-dimensional excitons which are delocalized over a length of up to several micrometres along the quantum wire. Such excitons give rise to a 10 meV broad luminescence band, representing a superposition of transitions between different delocalized states. In addition, we find a set of sharp luminescence peaks from excitons localized on a sub150 nm length scale. Theoretical calculations of exciton states in a disordered quasi-one-dimensional potential reproduce the experimental results.  相似文献   

19.
30km分布光纤温度传感器的空间分辨率研究   总被引:6,自引:0,他引:6  
分布光纤温度传感器是一种比较新型的传感器系统,它可以实时测量空间温度场的分布。空间分辨率是分布光纤温度传感器的一个重要参数。在30km分布光纤温度传感器系统的研制过程中,对系统的空间分辨率进行了优化设计。入射激光脉冲的宽度决定了系统空间分辨率的上限。光电接收系统和电系统的带宽也会影响系统的空间分辨率。电系统的带宽必须和激光脉冲的宽度相匹配。系统的空间分辨率既可以直接测量,也可以通过测量光纤末端菲涅尔反射的半宽度来间接测量。经过优化设计,在30km的系统中,空间分辨率达到了3m。  相似文献   

20.
We have developed fibre probes suitable for 325 nm UV light excitation and a photoluminescence near-field scanning optical microscope (NSOM) and demonstrated the photoluminescence imaging of phosphor BaMgAl10O17:Eu2+ (BAM) particles. The probe was fabricated by a two-step-etching method that we developed. The probe had a large taper angle at the top of the probe and a small taper angle at the root. The NSOM image was different from the topographical structure but roughly reflected the corresponding features of the particles. The inhomogeneity of the photoluminescence intensity between BAM particles was observed in the NSOM image. The photoluminescence intensity with various bandpass filters showed differences between the individual particles, which means that they have different spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号