首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Moisture-assisted crack growth in polymer adhesive/glass interfaces was measured as a function of the applied energy release rate, G, using a four-point flexure test coupled with an inverted microscope. The specimens consisted of two glass plates bonded together with an epoxy or an epoxy-acrylate adhesive. It was found that cracks formed and grew on both interfaces if the glass surfaces were both smooth; however, roughening the surface of one of the glass plates increased the fracture resistance of the interface sufficiently so that crack growth occurred only on the remaining “smooth” interface (top or bottom). Finite element analysis was used to determine the G and ψ (phase angle) appropriate for the different crack geometries. It was found experimentally that crack growth rates for all crack geometries depended on the applied G via a power law relationship and that for a given applied G, crack growth rates were sensitive to the crack geometry. The results indicate that the primary driving force for moisture-assisted crack growth at a polymer/glass interface is the applied G at the crack tip and that the effect of the phase angle for the different crack geometries (13° to 54°) is negligible.  相似文献   

2.
Moisture-assisted crack growth in polymer adhesive/glass interfaces was measured as a function of the applied energy release rate, G, using a four-point flexure test coupled with an inverted microscope. The specimens consisted of two glass plates bonded together with an epoxy or an epoxy-acrylate adhesive. It was found that cracks formed and grew on both interfaces if the glass surfaces were both smooth; however, roughening the surface of one of the glass plates increased the fracture resistance of the interface sufficiently so that crack growth occurred only on the remaining “smooth” interface (top or bottom). Finite element analysis was used to determine the G and ψ (phase angle) appropriate for the different crack geometries. It was found experimentally that crack growth rates for all crack geometries depended on the applied G via a power law relationship and that for a given applied G, crack growth rates were sensitive to the crack geometry. The results indicate that the primary driving force for moisture-assisted crack growth at a polymer/glass interface is the applied G at the crack tip and that the effect of the phase angle for the different crack geometries (13° to 54°) is negligible.  相似文献   

3.
Fatigue (slow) crack growth in epoxy/glass, epoxy acrylate/glass and epoxy/PMMA interfaces was studied under constant and cyclic loading at both high and low humidities using the interfacial, four-point flexure test. Finite element analysis was used to determine the energy release rate and phase angle appropriate for the different crack geometries observed. The experimental results show that for the polymer/glass interfaces, the primary driving force for fatigue crack growth is the applied energy release rate at the crack tip and that increasing test humidity enhances crack growth under constant loading but has an insignificant effect under cyclic loading. At low humidity the crack growth rates under cyclic loading are significantly greater than under constant loading. For epoxy/PMMA interfaces the crack growth results were independent of the applied energy release rate, relative humidity, and cyclic vs. constant loading, within experimental scatter. In addition, for polymer/glass interfaces the effect of phase angle (13 to 54°) on crack growth rates is not significant. However, for epoxy/PMMA interfaces the applied energy release rate for the initiation of crack growth is considerably greater for a phase angle of 66° than for 5°, indicating that increasing shear at the crack tip makes the initiation of crack growth more difficult. These results are discussed in terms of possible mechanisms of fatigue crack growth at polymer adhesive interfaces.  相似文献   

4.
Fatigue (slow) crack growth in epoxy/glass interfaces bonded with the silane coupling agent 3-aminopropyltriethoxysilane was studied under static and cyclic loading at 23°C, 95% RH using the double cleavage drilled compression test. Crack growth rates under cyclic loading were significantly greater than under static loading, in contrast to crack growth rate results in monolithic glass. After aging up to 34 h at 94°C in distilled water, the silane-bonded epoxy/glass specimens exhibited somewhat greater resistance to fatigue crack growth than the unaged samples; however, after aging at 98°C in distilled water and at 70°C in an aqueous KOH solution at pH 10, crack growth became cohesive and exhibited fractal behavior. Mechanisms for fatigue crack growth at silane-bonded epoxy/glass interfaces are proposed.  相似文献   

5.
Fatigue (slow) crack growth in epoxy/glass interfaces bonded with the silane coupling agent 3-aminopropyltriethoxysilane was studied under static and cyclic loading at 23°C, 95% RH using the double cleavage drilled compression test. Crack growth rates under cyclic loading were significantly greater than under static loading, in contrast to crack growth rate results in monolithic glass. After aging up to 34 h at 94°C in distilled water, the silane-bonded epoxy/glass specimens exhibited somewhat greater resistance to fatigue crack growth than the unaged samples; however, after aging at 98°C in distilled water and at 70°C in an aqueous KOH solution at pH 10, crack growth became cohesive and exhibited fractal behavior. Mechanisms for fatigue crack growth at silane-bonded epoxy/glass interfaces are proposed.  相似文献   

6.
Amorphous glasses are generally considered immune to mechanical fatigue effects associated with cyclic loading. In this study surprising new evidence is presented for a mechanical fatigue effect in borosilicate glass, in both moist air and dry nitrogen environments. The fatigue effect occurs at near threshold subcritical crack-growth rates (da/dt 3× 10-8 m/s) as the crack extension per cycle approaches the dimensions of the borosilicate glass network. While subcritical crack growth under cyclic loads at higher load levels is entirely consistent with environmentally assisted crack growth, lower growth rates actually exceed those measured under monotonic loads. This suggests a mechanical fatigue effect which accelerates subcritical crack-growth rates. Likely mechanisms for the mechanical fatigue effect are presented.  相似文献   

7.
Subcritical Crack Growth in a Phosphate Laser Glass   总被引:4,自引:0,他引:4  
The rate of subcritical crack growth in a metaphosphate Nd-doped laser glass was measured using the double-cleavage-drilled compression (DCDC) method. The crack velocity is reported as a function of stress intensity at temperatures ranging from 296 to 573 K and in nitrogen with water vapor pressures ranging from 40 Pa (0.3 mmHg) to 4.7 × 104 Pa (355 mmHg). The measured crack velocities follow region I, II, and III behavior similar to that reported for silicate glasses. A chemical and mass-transport-limited reaction rate model explains the behavior of the data except at high temperatures and high water vapor pressures where crack tip blunting is observed. Blunting is characterized by an arrest in the crack growth followed by the inability to reinitiate slow crack growth at higher stresses. A dynamic crack tip blunting mechanism is proposed to explain the deviation from the reaction rate model.  相似文献   

8.
The fracture of 6 glasses was studied in vacuum, <10−4 torr (10−2 N/m2), as a function of temperature from 25° to 775°C. Subcritical crack growth was observed in 4 of the glasses. Activation energies for crack motion ranged from 60 to 176 kcal/mol. The glasses which did not exhibit slow crack growth were "anomalous" glasses with abnormal thermal and elastic properties. Critical stress intensity factors for these 2 glasses increased ∼10% as the temperature increased to ∼600°C. It is felt that subcritical crack growth is not the result of alkali-ion diffusion or viscous flow but rather of a thermally activated growth process which depends on the crack-tip structure in the glass. A narrow cohesive region at the crack tip favors subcritical crack growth, whereas a wide region favors abrupt fracture.  相似文献   

9.
Subcritical Crack Growth along Ceramic-Metal Interfaces   总被引:1,自引:0,他引:1  
Environmentally assisted subcritical crack growth along glass/copper interfaces is examined in ambient-temperature gas environments as a function of humidity. Resulting interfacial crack velocities (v), characterised in terms of the crack extension force (G) and approximate solutions for the linear elastic stress intensity factor (K), show ν-K curve behavior typical of (bulk) ceramics. Subcritical crack growth rates are found to be initially highly sensitive to K for G) and to show evidence of a threshold stress intensity between 0.1 and 0.25 Mp a°m1/2 (region I). At higher crack velocities typically between °10–5 and 10–4 m/s, growth rates display a plateau and tend to become K independent (region II). Although specimen-to-specimen scatter is large in region I, interfacial crack velocities in moist environments far exceed those in dry environments and are over 3 orders of magnitude faster (at fixed K) than reported rat's for (bulk) soda-lime glass.  相似文献   

10.
Environmentally Enhanced Crack Growth in Soda-Lime Glass   总被引:4,自引:0,他引:4  
Crack growth data are presented for soda-lime glass in various chemical environments. It is shown that the same environments which govern crack growth rates in vitreous silica also do so in soda-lime glass. The slopes and positions of the crack growth curves in soda-lime glass are shown to differ from those in vitreous silica. It is hypothesized that the differences between the behavior of soda-lime glass and silica result from the effects of the modifier ions, Na+ and Ca2+, on the reactivity of the Si-O bond or through changes in the elastic properties of the bridging network. It is shown that sodium ion exchange and silica dissolution may also be important to crack growth, particularly at low crack velocities.  相似文献   

11.
Oxide glasses exhibit slow crack growth under stress intensities below the fracture toughness in the presence of water vapor or liquid water. The log of crack velocity decreases linearly with decreasing stress intensity factor in Region I. For some glasses, at a lower stress intensity, Ko, log v asymptotically diminishes where there is no measurable crack growth. The same glasses exhibit static fatigue, or a decreasing strength for increasing static loading times, as cracks grow and stress intensity eventually reaches the fracture toughness. In this case, some glasses exhibit a low stress below which no fatigue/failure is observed. The absence of slow crack growth under a low stress intensity factor is called the fatigue limit. Currently, no satisfactory explanation exists for the origin of the fatigue limit. We show that the surface stress relaxation mechanism, which is promoted by molecular water diffusion near the glass surface, may be the origin of the fatigue limit. First, we hypothesize that the slowing down of slow crack growth takes place due to surface stress relaxation during slow crack growth near the static fatigue limit. The applied stress intensity becomes diminished by a shielding stress intensity due to relaxation of crack tip stresses, thus resulting in a reduced crack velocity. This diminishing stress intensity factor should result in a crack growth rate near the static fatigue limit that decreases in time. By performing Double Cantilever Beam crack growth measurements of a soda‐lime silicate glass, a decreasing crack growth rate was measured. These experimental observations indicate that surface stress relaxation is causing crack velocities to asymptotically become immeasurably small at the static fatigue limit. Since the surface stress relaxation was shown to take place for various oxide glasses, the mechanism for fatigue limit explained here should be applicable to various oxide glasses.  相似文献   

12.
Subcritical crack growth measurements were made in borosilicate glass/Fe-Ni-Co particulate composites, in which the metal particles were used both as-received and also with a surface oxidation treatment. No crack growth was observed in the composites containing the partially oxidized particles before catastrophic failure ensued. The composites containing nonoxidized particles did exhibit measurable growth. Fracture surface observations identify strong bonding between the particles and matrix as the main reason for significantly increasing the slow crack growth resistance. This method of "effectively" eliminating subcritical crack growth may be a means by which the design threshold of glasses is raised, thus opening new areas of applications for glass systems.  相似文献   

13.
Experimental results are presented on subcritical crack growth under sustained and cyclic loads in a HIPed Si3N4 at 1450°C and a hot–pressed Si3N4–10 vol% SiCw composite in the temperature range 1300°–1400°C. Static and cyclic crack growth rates are obtained from the threshold for the onset of stable fracture with different cyclic frequencies and load ratios. Fatigue crack growth rates for both the monolithic and SiCw-reinforced Si3N4 are generally higher than the crack growth velocities predicted using static crack growth data. However, the threshold stress intensity factor ranges for the onset of crack growth are always higher under cyclic loads than for sustained load fracture. Electron microscopy of crack wake contact and crack–tip damage illustrate the mechanisms of subcritical crack growth under static and cyclic loading. Critical experiments have been conducted systematically to measure the fracture initiation toughness at room temperature, after advancing the crack subcritically by a controlled amount under static or cyclic loads at elevated temperatures. Results of these experiments quantify the extent of degradation in crack–wake bridging due to cyclically varying loads. The effects of preexisting glass phase on elevated temperature fatigue and fracture are examined, and the creep crack growth behavior of Si3N4–based ceramics is compared with that of oxide-based ceramics.  相似文献   

14.
The atomic force microscope (AFM) was used to explore the nature of features formed on the surfaces of cracks in soda–lime–silicate glass that were held at stress intensity factors below the crack growth threshold. All studies were conducted in water. Cracks were first propagated at a stress intensity factor above the crack growth threshold and then arrested for 16 h at a stress intensity factor below the threshold. The stress intensity factor was then raised to reinitiate crack growth. The cycle was repeated multiple times, varying the hold stress intensity factor, the hold time, and the propagation stress intensity factor. Examination of the fracture surface by optical microscopy showed surface features that marked the points of crack arrest during the hold time. These features were identical to those reported earlier by Michalske in a similar study of crack arrest. A study with the AFM showed these features to be a consequence of a bifurcation of the crack surface. During the hold period, waviness developed along the crack front so that parts of the front propagated out of the original fracture plane, while other parts propagated into the plane. Crack growth changed from the original flat plane to a bifurcated surface with directions of as much as 3° to 5° to the original plane. This modification of crack growth behavior cannot be explained by a variation in the far-field stresses applied to the crack. Nor can the crack growth features be explained by chemical fluctuations within the glass. We speculate that changes in crack growth direction are a consequence of an enhancement in the corrosion rate on the flank of the crack at stresses below the apparent crack growth threshold in a manner described recently by Chuang and Fuller.  相似文献   

15.
Ceramic matrix composites have the potential to operate at high temperatures and are, therefore being considered for a variety of advanced energy technologies such as combustor liners in land-based gas turbo/generators, heat exchangers and advanced fission and fusion reactors. Ceramic matrix composites exhibit a range of crack growth mechanisms driven by a range of environmental and nuclear conditions. The crack growth mechanisms include: (1) fiber relaxation by thermal (FR) and irradiation (FIR) processes, (2) fiber stress-rupture (SR), (3) interface removal (IR) by oxidation, and (4) oxidation embrittlement (OE) resulting from glass formation including effects of glass viscosity. Analysis of these crack growth processes has been accomplished with a combination experimental/modeling effort. Dynamic, high-temperature, in situ crack growth measurements have been made in variable Ar + O2 environments while a Pacific Northwest National Laboratory (PNNL) developed model has been used to extrapolate this data and to add radiation effects. In addition to the modeling effort, a map showing these mechanisms as a function of environmental parameters was developed. This mechanism map is an effective tool for identifying operating regimes and predicting behavior. The process used to develop the crack growth mechanism map was to: (1) hypothesize and experimentally verify the operative mechanisms, (2) develop an analytical model for each mechanism, and (3) define the operating regime and boundary conditions for each mechanism. A map for SiC/SiC composites has been developed for chemical and nuclear environments as a function of temperature and time.  相似文献   

16.
Moisture-assisted crack growth at various polymer/glass interfaces was measured as a function of applied strain energy release rate and relative humidity using a four-point flexure apparatus coupled with an inverted microscope. The specimens consisted of two glass plates bonded together with a thin layer of commercially available epoxy-acrylate, urethane-acrylate or epoxy adhesive. The crack front at the epoxy-acrylate and epoxy interfaces was relatively smooth and, above a threshold strain energy release rate, the crack growth rate was dependent on the applied strain energy release rate via a power law relationship. Crack growth along the urethane-acrylate interface was characterized by the development of finger-like perturbations along the advancing crack front. These finger-like perturbations grew until they reached a steady-state length. Once the fingers reached steady-state, the crack growth rate of the overallcrack front was dependent on the applied strain energy release rate via a power law function. With all the polymer adhesives crack growth rates increased with higher relative humidities.  相似文献   

17.
In literature, the concept of material gradation is shown to inhibit surface crack initiation in glass/ceramic composites subjected to Hertzian indentation. However, surface cracks could yet initiate due to relatively higher loadings or in the presence of surface flaws/defects. Hence, characterization of graded composites concerning the resistance against Hertzian crack initiation and propagation manifests itself as a prominent matter. In this study, axisymmetric Hertzian cracks evolving in graded glass/ceramic composites propelled by a rigid cylindrical punch are investigated employing a novel recursive method, called the stacked-node propagation procedure. Crack trajectories and their propagation susceptibilities are predicted via the minimum strain energy density (MSED) criterion regarding the crack growth resistance (R-curve) of ceramics. The stress trajectory approach is also considered for a homogeneous glass to reveal the reliance and effectiveness of the MSED criterion in the present crack problems. The Mori–Tanaka relations are adopted to model the elastic modulus and Poisson's ratio variations through the composites, which are implemented on the simulations via the homogeneous finite element approach. Hertzian crack problem of a practically producible graded composite comprised of oxynitride glass and a fine-grained silicon nitride ceramics (Si3N4) is treated as a case study. The degree of material gradation is assessed for the mitigation of surface crack initiation and propagation risks.  相似文献   

18.
Previous studies show that stress corrosion crack growth in glass is controlled by chemically enhanced crack tip bond rupture reactions. The brittle nature of fracture in glass suggests that the region where bond rupture reactions occur must be on the order of the atomic spacings in the material. Crack growth kinetics and zeolite diffusion data were used to determine the relation between molecular size and reactivity at the crack tip. Crack growth rates in silica glass were measured in the presence of a series of chemical species that have comparable chemical features and systematically increasing molecular diameters. Results show that chemically active species with diameters greater than 0.5 nm are ineffective as stress corrosion agents. A comparison of crack growth results and zeolite diffusion measurements was used to conclude that the opening to the crack tip is less than or equal to 0.5 nm. This crack tip dimension is consistent with the concept of atomic scale brittle fracture in silica glass.  相似文献   

19.
Delamination of polymer/glass interfaces was studied under cyclic and monotonic loading using an interfacial, four-point flexure sandwich specimen. Specifically, crack growth rates along epoxy acrylate/glass interfaces were characterized over a range of velocities from 10−9 to 10−6 m/s as a function of low (10–20% RH) and high (75–80% RH) humidities. For low humidities, interfacial crack growth rates under cyclic loading are almost two orders of magnitude greater than those under monotonic loading with energy release rates G = Gmax of the cyclic loading. At high humidities, interfacial crack growth rates under monotonic loading are approximately equal to cyclic fatigue crack growth rates at low humidity.  相似文献   

20.
Crack Healing in a Silicon Nitride Ceramic   总被引:1,自引:0,他引:1  
A detailed study has been undertaken on crack healing at high temperatures in a silicon nitride containing 10 wt% additives in order to identify the dominant mechanism responsible for the phenomenon. Fracture toughness increased with annealing time and the crack growth rate decreased until arrest with increasing testing time. Differentiation between possible operating mechanisms was obtained using critical experiments involving detailed compliance measurements, crack wake removal, and crack reinitiation tests and a comprehensive TEM study of healed cracks. It was found that crack healing was not uniform in the crack wake. When the original crack path was either transgranular or intergranular, healing was associated with the appearance of a thin layer of silica glass due to the oxidation of Si3N4 grains. But when the crack went through multigrain junctions, the former crack path was completely obliterated and replaced by a new, crystalline phase formed by diffusion of the preexisting glass phase. It is concluded that the increased crack growth resistance and fracture toughness at high temperature is attributable to the partial recovery of the original strength from the crack segments at multigrain junctions due to vitreous phase flow and subsequent crystallization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号