首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen concentration depth profiles on surfaces of SiO2 glass fractured slowly in water and rapidly in oil were determined by nuclear reaction analysis. It was found that water enters SiO2 glass during slow crack growth in water.  相似文献   

2.
Subcritical crack growth under mixed-mode loading was studied in soda-lime glass. Pure mode I, combined mode I and mode II, and pure mode II loadings were achieved in precracked disk specimens by loading in diametral compression at selected angles with respect to the symmetric radial crack. Crack growth was monitored by measuring the resistance changes in a microcircuit grid consisting of parallel, electrically conducting grid lines deposited on the surface of the disk specimens by photolithography. Subcritical crack growth rates in pure mode I, pure mode II, and combined mode I and mode II loading could be described by an exponential relationship between crack growth rate and an effective crack driving force derived from a mode I-mode II fracture toughness envelope. The effective crack driving force was based on an empirical representation of the non-coplanar strain energy release rate. Stress intensities for kinked cracks were assessed using the method of caustics and an initial decrease and a subsequent increase in the subcritical crack growth rates of kinked cracks were shown to correlate with the variations of the mode I and the mode II stress intensities.  相似文献   

3.
Subcritical crack growth in glasses and ceramics has been studied extensively under Mode I loading. In this study, subcritical crack growth in soda–lime glass under mixed-mode loading has been determined, using the double cleavage drilled compression (DCDC) specimens with a hole offset from the center line. With this test configuration, cracks are nucleated at the pole of the hole and propagated parallel to the centerline of the specimen under mixed-mode loading. Under mixed-mode loading, subcritical-crack-growth rates are significantly less than those under Mode I loading at the same energy-release rates. Possible mechanisms for this increased resistance to subcritical crack growth under mixed-mode loading are discussed.  相似文献   

4.
Fracture and subcritical crack-growth characteristics under combined Modes I and III loading were studied using the modified compact tension (CT) specimens of soda-lime glass. The combined mode load was applied to the specimen in the direction β with respect to the initial crack. By superposition of Mode III, the advancing crack begins to rotate at an angle Ψ to the initial crack plane, which nearly maximizes the Mode I stress intensity factor K I(Ψ), and the crack continues to propagate in the same direction. In this case, unlike combined Modes I and II, the crack breaks into multiple partial fronts, and ligamentary bridging forms fracture lances when these segmented cracks are held together. The crack velocity d a /d t was plotted versus the maximum Mode I stress intensity factor K I(Ψ) for combined Modes I and III loading. The d a /d t values are initially high, and the crack growth tends to be discontinuous compared with the result for pure Mode I. The subcritical crack growth seems to occur when the K I value for the initial crack reaches a certain value. The d a /d t - K I(Ψ) curves for combined Modes I and III lie roughly on the same curve as that for pure Mode I as the crack growth increases.  相似文献   

5.
Electrical de fields applied through electrodes on either side of a slow-running crack in soda-lime-silica glass resulted in a deviation of the crack plane and in delayed deceleration, arrest, and healing. In some cases crack closure occurred while still under load. Resumption of propagation resumed gradually upon removal of the field. It is suggested that the effects involve displacement of the dilated negatively charged zone at the crack tip, while healing is effected by reformation of bonds between the crack surfaces.  相似文献   

6.
Radial cracks generated in heavy-metal fluoride glass (HMFG) by Vickers indentation were found to decrease in length as a function of time when exposed to humid environments in the temperature range of 22° to 80°C. Inspection by optical and electron microscopy indicated that the cracks appear to be closing, leaving little or no evidence of the original crack aperture. The effect was observed to increase with time, temperature, and humidity levels for all conditions studied. Possible explanations for this behavior include viscous relaxation of glass in the region of the crack tip, or the generation and transport of a fluoride gel phase to the crack aperture.  相似文献   

7.
Interfacial crack growth behavior along a urethane acrylate/glass interface is characterized by the development of finger-like perturbations along the advancing crack front. The finger-like perturbations grow from a slightly irregular crack front until they reach a steady-state where the velocity of the finger tips equals the velocity of the finger valleys. Once the fingers reached steady-state, the crack velocity was dependent on the applied strain energy release rate via a power law relationship where the exponent was independent of test humidity; however, the multiplicative constant A decreased by an order of magnitude from 80 to 15% RH. The spacing of the fingers was found to be independent of the crack's velocity and the relative humidity of the environment.  相似文献   

8.
Interfacial crack growth behavior along a urethane acrylate/glass interface is characterized by the development of finger-like perturbations along the advancing crack front. The finger-like perturbations grow from a slightly irregular crack front until they reach a steady-state where the velocity of the finger tips equals the velocity of the finger valleys. Once the fingers reached steady-state, the crack velocity was dependent on the applied strain energy release rate via a power law relationship where the exponent was independent of test humidity; however, the multiplicative constant A decreased by an order of magnitude from 80 to 15% RH. The spacing of the fingers was found to be independent of the crack′s velocity and the relative humidity of the environment.  相似文献   

9.
梁泉水  陈开源 《广东化工》2009,36(11):78-80
耐慢速裂纹增长性能是提高聚乙烯(PE)管材耐用性的关键因素。文章综述了PE管材发生慢速裂纹增长的机理和影墒因素,最后给出了提高PE管材耐慢速裂纹增长性能的改进措施。  相似文献   

10.
选择典型的具有不同分子链结构的4种聚乙烯为研究体系,利用慢断裂试验仪对4种材料进行不同温度、不同载荷以及不同切口深度分析的慢断裂生长失效实验。研究表明:4种材料中以D样品粘弹性最强,在实验条件下未观察到慢断裂失效过程;A样品粘弹性最弱,材料断裂失效时间最短;B和C样品各项性能指数居中,该结果得到其他实验结果的支持。实验表明,慢断裂试验仪适用于对材料使用性能的失效评价测量。  相似文献   

11.
We present atomic force microscopy (AFM) observations of crack tips in glass during subcritical propagation. These have been obtained by means of an AFM sample holder which has been specially designed to propagate indentation cracks in glass plates. Crack tips in soda–lime–silica glass are always preceded by a few nanometers deep deformation. In vitreous silica, no other surface deformation than the crack itself could be detected. For both materials, the crack opening is found to largely exceed the elastic solution.  相似文献   

12.
The slow (subcritical) crack growth (SCG) resistance of Si3N4 and SiC ceramics has been evaluated by a stepwise loading test on bending bars precracked by Vickers indentation. Three highly refractory materials were selected for the evaluation: i.e., (1) high-purity Si3N4 sintered by hot isostatic pressing (HIP) without additives and (2,3) α - and β - SiC pressureless sintered with B and C addition. Under the hypothesis of linear elastic behavior at high temperature, which was found satisfied in the present materials, the SCG resistance was expressed in terms of initial stress intensity factor critical for SCG failure within a predetermined lifetime. The present method was found useful in shortening the testing time and consistent with other traditional fatigue tests (e.g., static-fatigue test): It is recommended as a screening test for materials under research and development. Among the materials tested in the present study, the highest SCG resistance up to 1440°C was found in the high-purity Si3N4 without additives.  相似文献   

13.
Moisture-assisted crack growth in polymer adhesive/glass interfaces was measured as a function of the applied energy release rate, G, using a four-point flexure test coupled with an inverted microscope. The specimens consisted of two glass plates bonded together with an epoxy or an epoxy-acrylate adhesive. It was found that cracks formed and grew on both interfaces if the glass surfaces were both smooth; however, roughening the surface of one of the glass plates increased the fracture resistance of the interface sufficiently so that crack growth occurred only on the remaining “smooth” interface (top or bottom). Finite element analysis was used to determine the G and ψ (phase angle) appropriate for the different crack geometries. It was found experimentally that crack growth rates for all crack geometries depended on the applied G via a power law relationship and that for a given applied G, crack growth rates were sensitive to the crack geometry. The results indicate that the primary driving force for moisture-assisted crack growth at a polymer/glass interface is the applied G at the crack tip and that the effect of the phase angle for the different crack geometries (13° to 54°) is negligible.  相似文献   

14.
Moisture-assisted crack growth in polymer adhesive/glass interfaces was measured as a function of the applied energy release rate, G, using a four-point flexure test coupled with an inverted microscope. The specimens consisted of two glass plates bonded together with an epoxy or an epoxy-acrylate adhesive. It was found that cracks formed and grew on both interfaces if the glass surfaces were both smooth; however, roughening the surface of one of the glass plates increased the fracture resistance of the interface sufficiently so that crack growth occurred only on the remaining “smooth” interface (top or bottom). Finite element analysis was used to determine the G and ψ (phase angle) appropriate for the different crack geometries. It was found experimentally that crack growth rates for all crack geometries depended on the applied G via a power law relationship and that for a given applied G, crack growth rates were sensitive to the crack geometry. The results indicate that the primary driving force for moisture-assisted crack growth at a polymer/glass interface is the applied G at the crack tip and that the effect of the phase angle for the different crack geometries (13° to 54°) is negligible.  相似文献   

15.
The atomic force microscope (AFM) was used to explore the nature of features formed on the surfaces of cracks in soda–lime–silicate glass that were held at stress intensity factors below the crack growth threshold. All studies were conducted in water. Cracks were first propagated at a stress intensity factor above the crack growth threshold and then arrested for 16 h at a stress intensity factor below the threshold. The stress intensity factor was then raised to reinitiate crack growth. The cycle was repeated multiple times, varying the hold stress intensity factor, the hold time, and the propagation stress intensity factor. Examination of the fracture surface by optical microscopy showed surface features that marked the points of crack arrest during the hold time. These features were identical to those reported earlier by Michalske in a similar study of crack arrest. A study with the AFM showed these features to be a consequence of a bifurcation of the crack surface. During the hold period, waviness developed along the crack front so that parts of the front propagated out of the original fracture plane, while other parts propagated into the plane. Crack growth changed from the original flat plane to a bifurcated surface with directions of as much as 3° to 5° to the original plane. This modification of crack growth behavior cannot be explained by a variation in the far-field stresses applied to the crack. Nor can the crack growth features be explained by chemical fluctuations within the glass. We speculate that changes in crack growth direction are a consequence of an enhancement in the corrosion rate on the flank of the crack at stresses below the apparent crack growth threshold in a manner described recently by Chuang and Fuller.  相似文献   

16.
简要介绍了聚乙烯管材发生慢速裂纹增长(SCG)的机理,并详细介绍了影响聚乙烯管材耐SCG性能的影响因素,包括系带分子(TMs)、界面相和无定形相的活动性,以及聚乙烯管材专用料的研发和熔融加工过程中的结构与形态控制研究。  相似文献   

17.
Composites with very thin second-phase interlayers were made by painting zirconia tapes with a slurry that contained alumina and a fugitive polymer. Warm uniaxial pressing was used to produce microstructures that contained either straight or wavy interlayers. Through the use of the fugitive polymer and a carefully selected sintering temperature, porosity was introduced into the second phase. Samples that were tested in bending displayed high strengths (540–580 MPa), whereas examination of polished and fractured test bars revealed crack deflection at weak interlayers.  相似文献   

18.
We have developed a method for measurement of internal stress in glass articles. The method uses Rayleigh-scattered light from a properly polarized laser beam propagating through glass at an oblique angle. This light is imaged with an electronic focal plane array camera. The method is similar to earlier published methods except for the inclusion of an externally controlled phase retarder. The phase retarder allows for the success of the method. The method is suitable for use on flat or curved glass and is applicable over a broad range of residual stresses. Experimental results are provided showing the in-plane stress throughout the thickness of a television glass sample.  相似文献   

19.
使用自制的电磁动态塑化挤出机挤出高密度聚乙烯(HDPE)管材。对稳态挤出和振动挤出的HDPE管材耐慢速裂纹增长性能进行了测试。采用DSC、WAXD分析研究了振动力场对HDPE管材耐慢速裂纹增长性能的影响。结果表明:振动挤出的HDPE管材结晶度提高,熔点升高,晶片变厚,晶粒尺寸变大,结晶完善,耐慢速裂纹增长性能提高。  相似文献   

20.
Subscritical crack growth of sintered silicon nitride was analyzed in terms of the R -curve. Provided that the stress intensity at the crack tip governs the subcritical crack-growth velocity, the K I– V relationship of sintered silicon nitride exhibiting a rising R -curve is shown to shift to the high- K I region as the crack advances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号