共查询到20条相似文献,搜索用时 62 毫秒
1.
序列模式挖掘在网络业务流分析中的应用 总被引:2,自引:0,他引:2
网络业务流分析是为了适应网络优化的需要而出现的分析方法。把一种新的序列模式挖掘算法用于网络业务流分析,对网络业务的模式进行挖掘,性能上优于以往的算法。 相似文献
2.
网络告警序列中的频繁情景规则挖掘算法 总被引:4,自引:1,他引:4
网络告警序列中隐含着丰富的关于网络自身行为特征的模式知识,对其进行有效挖掘和利用将显著提高网络故障管理智能化程度.本文研究网络告警序列中的知识发现问题,提出并实现了一种基于滑动窗口的情景规则挖掘算法。 相似文献
3.
4.
随着大数据时代的到来,能够高效地应用序列模式挖掘的各种方法,准确地发现数据中具有先后顺序的规律,并提高其实用性,将是未来研究工作的重心。因此,为了增加用户参与度,挖掘其中更符合用户需求的序列模式,本文介绍了序列模式挖掘算法中可以添加的约束,以及其中的通用时间约束。 相似文献
5.
6.
研究这样一个问题:给定多序列、支持度阈值和间隔约束,从多序列中挖掘所有出现次数不小于支持度阈值的频繁序列模式,这里要求模式中任意两个相邻元素在序列中的出现都要满足用户自定义的间隔约束,并且模式在序列中的出现要满足one-off条件。在解决该问题上,已有算法M-OneOffMine在计算模式的支持度时,只考虑模式的每个字符在序列中的首次出现,导致计算的模式支持度远小于其真实支持度,以致许多频繁的模式没有被挖掘出来。为此,设计了一个有效的带有间隔约束的多序列模式挖掘算法--MMSP算法:首先,通过采用二维表保存模式的候选位置;然后,根据候选位置采用最左最优的思想选择匹配位置。通过生物DNA序列进行实验,多序列中元素序列数目不变而序列长度变化时,MMSP挖掘出的频繁模式总数是同类算法M-OneOffMine的3.23倍;在元素序列个数变化时,MMSP挖掘出的频繁模式个数平均是M-OneOffMine的4.11倍;这两种情况下MMSP都有更好的时间性能。在模式长度变化时,MMSP挖掘出的频繁模式个数分别平均是M-OneOffMine的2.21倍和MPP的5.24倍。同时还验证了M-OneOffMine挖掘到的模式是MMSP挖掘到的频繁的子集。实验结果表明,MMSP算法不仅可以挖掘到更多的频繁模式,而且时间花费更少,更适合于实际的应用。 相似文献
7.
序列模式挖掘中几种算法的缺点:都要进行多次扫描数据库,CPU要进行多次I/O操作.这成为序列挖掘中的一大瓶颈,使得算法在实际应用中的效率不高.文中提出一种矩阵算法,即在一次扫描数据库时,根据扫描数据建立由0和1组成的事务矩阵.接下来的大序列、序列模式等都是通过矩阵的列向量对应元素的相乘运算和简单的加法运算而得到.从而使算法得到进一步优化,提高了CPU的使用率,解决了序列挖掘中的瓶颈问题.本算法通过大量的数据实验,证明了算法确实有效地优化了算法的时间复杂度. 相似文献
8.
多维序列模式挖掘是在序列模式挖掘的基础上发展起来的,文章阐述了有关概念,介绍了两种序列模式挖掘算法:GSP算法和PrefixSpan算法,在对两类算法进行比较分析的基础上形成了挖掘多维序列模式的UniSeq算法、Dim-Seq算法和Seq-Dim算法。针对不同维度的模式,各种算法特点不同。 相似文献
9.
间隙约束的序列模式挖掘是一种特殊形式的序列模式挖掘方法,该方法能够揭示一定间隔下的频繁出现(发生)的子序列。但当前间隙约束的序列模式挖掘方法只关注正序列模式的挖掘,忽略了事件中的缺失行为。为解决该问题,探索了周期间隙约束的负序列模式(Negative Sequential Pattern with Periodic Gap Constraints, NSPG)挖掘方法,该方法能够更灵活地反映元素与元素之间的关系。为高效求解NSPG挖掘问题,提出了NSPG-INtree(Incomplete Nettrees)算法,该算法主要包括两个步骤:候选模式生成和支持度计算。在候选模式生成方面,为了减少候选模式的数量,该算法采用模式连接策略;在支持度计算方面,为了提高模式支持度计算效率并减少空间消耗,该算法采用不完整网树结构计算模式支持度。实验结果表明,NSPG-INtree算法不仅具有较高的挖掘效率,而且能同时挖掘间隙约束的正序列模式和负序列模式。与其他间隙约束的序列模式挖掘算法相比,NSPG-INtree能够多发现209%~352%的模式;与不同策略的对比算法相比,NSPG-INtree能够缩... 相似文献
10.
数据挖掘领域一个活跃的研究分支就是序列模式的发现,即在序列数据库中找出所有的频繁子序列。目前的序列模式挖掘方法主要分为两类,一类是候选集生成测试方法:另一类是模式扩展方法。先介绍序列模式挖掘中的基本概念,然后描述几个重要算法,最后给出性能分析。 相似文献
11.
为了发现网络流量的规律,本文引入了一种有效的网络流量挖掘算法。网络流量模式是一种反映网络访问频率规律的序列模式,引入了一种扩展的prefixspan算法,将这些序列作为前缀去递归挖掘,并构造一个投影数据库,该算法改进了候选子序列生成效率,前缀投影减少了投影数据库的大小,从而改进了处理效率。 相似文献
12.
在网络流量模式挖掘中,发现邻接序列模式(CSP)是一个重要问题,为网络流量分析提出了一种新的树型数据结构。为了有效存储包含指定项的所有序列,该树组合了前缀树和后缀树,这种特殊的树结构确保了CSP检测的有效性。实验表明与已有方法相比,使用该结构不仅改进了CSP挖掘的时间性能,而且改进了空间性能。 相似文献
13.
序列模式挖掘是数据挖掘的一个重要问题.传统的序列模式仅能揭示频繁出现的项目以及出现的顺序,但不能揭示在前续项目出现的情况下,后续项目出现的时间.在本文中,引入一种新的多时间粒度序列模式,模式中相邻项目之间的转换时间采用从原数据集中导出的、多时间粒度下的最小有界时间区间和平均时间标注.建立了多时间粒度序列模式挖掘模型,提出了一种新的多时间序列模式挖掘算法MG-PrefixSpan.实验表明,算法是有效的. 相似文献
14.
基于CTID序列模式的一种改进算法 总被引:2,自引:0,他引:2
提高序列模式挖掘算法效率的关键在于减少发现频繁序列的时间。文中基于CTID概念提出了一种改进的频繁序列模式挖掘算法——SPM,它充分利用频繁项集和中间挖掘结果,得到更多有效的序列模式,并简化了剪枝步骤,从而提高了算法效率。实验证明该算法可行。 相似文献
15.
16.
序列模式图及其构造算法 总被引:11,自引:0,他引:11
序列模式挖掘是数据挖掘的一个重要分支。在序列事务及有关信息处理中有着广泛的应用,目前已有许多序列模式模型及相应的挖掘算法,该文在对序列模式挖掘问题及挖掘算法进行分析的基础上。定义了一种称为序列模式图的序列模式框架。用于表示序列模式挖掘过程发现的所有序列模式,序列模式图是由离散状态的序列集到统一的图结构的桥梁,可以将序列模式挖掘结果统一到序列模式图中来,基于序列模式图进行研究可发现某些结构化的新知识,称之为后序列模式挖掘,文中还给出了序列模式图的有关性质及构造算法。 相似文献
17.
一种挖掘压缩序列模式的有效算法 总被引:1,自引:0,他引:1
从序列数据库中挖掘频繁序列模式是数据挖掘领域的一个中心研究主题,而且该领域已经提出和研究了各种有效的序列模式挖掘算法.由于在挖掘过程中会产生大量的频繁序列模式,最近许多研究者已经不再聚焦于序列模式挖掘算法的效率,而更关注于如何让用户更容易地理解序列模式的结果集.受压缩频繁项集思想的启发,提出了一种CFSP(compressing frequent sequential patterns)算法,其可挖掘出少量有代表性的序列模式来表达全部频繁序列模式的信息,并且清除了大量的冗余序列模式.CFSP是一种two-steps的算法:在第1步,其获得了全部闭序列模式作为有代表性序列模式的候选集,与此同时还得到大多数的有代表性模式;在第2步,该算法只花费了少量的时间去发现剩余的有代表性序列模式.一个采用真实数据集与模拟数据集的实验研究也证明了CFSP算法具有高效性. 相似文献
18.
序贯模式是时间相关数据库中存在的一种十分有用的知识模式,其发掘方法的研究有着十分重要的意义,本文给出了一种挖掘数据库中序贯模式的算法,通过认真地研究了挖掘过程中的中间及结果数据的存储结构,从而大大地减少了对数据库的扫描遍数,提高了算法的效率。 相似文献
19.
20.
现有的增量式挖掘算法在支持度发生变化时,需要对序列数据库进行重复挖掘,为减少由此产生的时空消耗,提出一种高效的增量式序列模式挖掘算法。算法采用频繁序列树作为序列存储结构,当序列数据库和最小支持度发生变化时,通过执行更新操作,实现频繁序列树的更新,利用深度优先遍历频繁序列树找到序列数据库中所有的序列模式。实验结果表明,与IncSpan算法和PrefixSpan算法相比,该算法的挖掘效率较高。 相似文献