首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We performed scanning tunneling spectroscopy measurements on suspended single-walled carbon nanotubes with independently addressable source and drain electrodes in the Coulomb blockade regime. This three-terminal configuration allows the resistance to the source and drain electrodes to be individually measured, which we exploit to demonstrate that electrons were added to spin-degenerate states of the carbon nanotube. Unexpectedly, the Coulomb peaks also showed a strong spatial dependence. By performing simultaneous scanning tunneling spectroscopy and electrical transport measurements we show that the probed states are extended between the source and drain electrodes. This indicates that the observed spatial dependence reflects a modulation of the contact resistance.  相似文献   

2.
Vedala H  Roy S  Doud M  Mathee K  Hwang S  Jeon M  Choi W 《Nanotechnology》2008,19(26):265704
We present an electrical conductivity study on a double-stranded DNA molecule bridging a single-walled carbon nanotube (SWNT) gap. The amine terminated DNA molecule was trapped between carboxyl functionalized SWNT electrodes by dielectrophoresis. The conductivity of DNA was measured while under the influence of various environmental factors, including salt concentration, counterion variation, pH and temperature. Typically, a current of tens of picoamperes at 1?V was observed at ambient conditions, with a decrease in conductance of about 33% in high vacuum conditions. The counterion variation was analyzed by changing the buffer from sodium acetate to tris(hydroxymethyl) aminomethane, which resulted in a two orders of magnitude increase in the conductivity of the DNA. A reversible shift in the current signal was observed for pH variation. An increase in conductivity of the DNA was also observed at high salt concentrations.  相似文献   

3.
We report the fabrication of single-walled carbon nanotube (SWNT) DNA sensors and the sensing mechanism. The simple and generic protocol for label-free detection of DNA hybridization is demonstrated with random sequence 15mer and 30mer oligonucleotides. DNA hybridization on gold electrodes, instead of on SWNT sidewalls, is mainly responsible for the acute electrical conductance change due to the modulation of energy level alignment between SWNT and gold contact. This work provides concrete experimental evidence on the effect of SWNT-DNA binding on DNA functionality, which will help to pave the way for future designing of SWNT biocomplexes for applications in biotechnology in general and also DNA-assisted nanotube manipulation techniques.  相似文献   

4.
流体排布法是实现碳纳米管定向排列的一种简单的方法。采用流体排布法在具有浸润性图案化的基底上成功地对单壁碳纳米管(SWNTs)束进行了水平方向上的排布。将SWNTs悬浮液滴入光刻胶制成的微通道中,在流体剪切力作用下,弯曲的SWNTs在一定程度上会被拉伸并且平行地排列在纳米级宽度的微通道中。将排列好的SWNTs阵列转移到一些不同间距的金电极对上面,制作成碳纳米管场效应晶体管(CNTFET)。CNTFET的电性能测试结果表明,制备的SWNTs束可以制造出不同电极间距同时具有良好电性能的CNTFET。  相似文献   

5.
Electrostatic force microscopy and scanning gate microscopy are employed to investigate the local electrical characteristics of single-walled carbon nanotube (SWCNT) devices that are fabricated by alternating current dielectrophoresis with high spatial resolutions. The results show good electrical anchoring of nanotubes to electrodes and absence of local gate dependence as well as global gate dependence while device resistance can be dominated by contact resistances among bundles of SWCNTs.  相似文献   

6.
Magnetic molecules are potential building blocks for the design of spintronic devices. Moreover, molecular materials enable the combination of bottom-up processing techniques, for example with conventional top-down nanofabrication. The development of solid-state spintronic devices based on the giant magnetoresistance, tunnel magnetoresistance and spin-valve effects has revolutionized magnetic memory applications. Recently, a significant improvement of the spin-relaxation time has been observed in organic semiconductor tunnel junctions, single non-magnetic molecules coupled to magnetic electrodes have shown giant magnetoresistance and hybrid devices exploiting the quantum tunnelling properties of single-molecule magnets have been proposed. Herein, we present an original spin-valve device in which a non-magnetic molecular quantum dot, made of a single-walled carbon nanotube contacted with non-magnetic electrodes, is laterally coupled through supramolecular interactions to TbPc(2) single-molecule magnets (Pc=phthalocyanine). Their localized magnetic moments lead to a magnetic field dependence of the electrical transport through the single-walled carbon nanotube, resulting in magnetoresistance ratios up to 300% at temperatures less than 1 K. We thus demonstrate the functionality of a supramolecular spin valve without magnetic leads. Our results open up prospects of new spintronic devices with quantum properties.  相似文献   

7.
The electrical conductivity of DNA duplex is affected by many factors such as DNA base sequence, hydration of DNA duplex, connecting configuration between DNA duplex and electrodes, thermal fluctuation of DNA duplex structure. We here investigate the electrical conducting properties of DNA duplexes sandwiched between Au electrodes by molecular simulations using nonequilibrium Green’s function method coupled with density functional theory. The results reveal the dependence of electrical conductivity on DNA base sequence as well as hydration, which are in qualitative agreement with experiment. The present results indicate the important role played by hydrating water molecules in the electrical conductivity through DNA duplexes.  相似文献   

8.
A unique nanoelectronic platform, based on single-walled carbon nanotubes (SWNTs), has been fabricated for measuring electrical transport in single-molecule DNA. We have tested 80 base pairs of single- and double-stranded DNA (ssDNA and dsDNA, respectively) of complex base sequences. About a 25-40 pA current (at 1 V) was measured for the dsDNA molecule covalently attached to the SWNT electrode at its termini. In the absence of base pair stacking, a ssDNA carries a feeble current of approximately 1 pA or less. Gate-voltage-dependent I-V characteristics revealed that the bridging dsDNA molecule acts as a p-type channel between SWNT source and drain electrodes.  相似文献   

9.
We present observations of resonance behavior in a torsional nanoelectromechanical device built with an individual single-walled carbon nanotube. The effect of applied torsional strain on the transport properties of the nanotube provides an electrical signal transducer and hence a means of measuring oscillation amplitude, resonance frequency, and quality factor. The mechanical resonance is confirmed by imaging and the electromechanical signal is compared to quasi-static measurements.  相似文献   

10.
In this study we explore the effect of applied strain on the electrical resistance of carbon nanotube buckypaper films encapsulated in several types of epoxy resins. We find that such buckypaper sensors are indeed able to measure strains in polymers with different elastic properties and that the electrical resistance change similarly for all polymers tested here. For highly ductile polymers, the resistance change of the buckypaper sensors can be measured for strains higher than 30%, thus demonstrating surprisingly high sensitivity at large deformations. Different electromechanical responses are observed when the buckypapers are made of single-walled or multi-walled carbon nanotubes. The response of the buckypapers to the stress and strain distributions locally induced by well defined defects deliberately introduced into the resins is also assessed. The buckypaper sensors are found to be sensitive to the geometry of local defects.  相似文献   

11.
Networks of single-walled carbon nanotubes were assembled onto microelectrodes by dielectrophoresis. The dependence of the obtained networks on several assembly parameters such as bias voltage, field application time, frequency, electrode geometry and the nanotube solvent were investigated both structurally and electrically. Reproducible differences in morphological and electrical properties were observed for the parameters investigated. Application of a bias voltage above 10 V for more than 30 seconds with nanotubes in an SDS solution, resulted in dense networks with a relatively low resistance in the 10 komega regime. On the other hand, individual nanotubes and bundles were assembled with lower voltages applied for less than 10 seconds and with other nanotubes solutions. The experimental results were combined with theoretical calculations in order to find a geometry and voltage independent threshold field for the successful assembly of nanotubes between electrodes using dielectrophoresis.  相似文献   

12.
Yu WJ  Lee SY  Chae SH  Perello D  Han GH  Yun M  Lee YH 《Nano letters》2011,11(3):1344-1350
We report small hysteresis integrated circuits by introducing monolayer graphene for the electrodes and a single-walled carbon nanotube network for the channel. Small hysteresis of the device originates from a defect-free graphene surface, where hysteresis was modulated by oxidation. This uniquely combined nanocarbon material device with transparent and flexible properties shows remarkable device performance; subthreshold voltage of 220 mV decade(-1), operation voltage of less than 5 V, on/off ratio of approximately 10(4), mobility of 81 cm(2) V(-1) s(-1), transparency of 83.8% including substrate, no significant transconductance changes in 1000 times of bending test, and only 36% resistance decrease at a tensile strain of 50%. Furthermore, because of the nearly Ohmic contact nature between the graphene and carbon nanotubes, this device demonstrated a contact resistance 100 times lower and a mobility 20 times higher, when compared to an Au electrode.  相似文献   

13.
Transparent and conductive single-walled carbon nanotube (SWNT) thin films were fabricated onto glass substrates and their optical and electrical properties were evaluated. Particular attention was given to the dependence of the conductivity and optical transparency on the thickness of the films. Furthermore, the SWNT thin films were integrated in organic photovoltaic devices as the hole transport electrode. The best photovoltaic performance was observed for the devices utilizing 80 nm SWNT films with a sheet resistance of 362 Ω/sq, and a transmittance of 64% at 520 nm. The experiments reveal that SWNTs films can be used as transparent electrodes for efficient, flexible organic photovoltaic devices.  相似文献   

14.
A novel approach to creating a gap on the nanometer scale between two adjacent electrodes of the same or different metals is described. The gap size can be well controlled through sidewall coverage in a self-aligned manner and it can be tuned from 60 nm down to 5 nm with high reproducibility. This technique is fully compatible with traditional microfabrication technology and it is easily implemented to fabricate a nanogap electrode array for integration purposes. An array of short-channel single-walled carbon nanotube field-effect transistors is demonstrated.  相似文献   

15.
We introduce voltage-contrast scanning electron microscopy (VC-SEM) for visual characterization of the electronic properties of single-walled carbon nanotubes. VC-SEM involves tuning the electronic band structure and imaging the potential profi le along the length of the nanotube. The resultant secondary electron contrast allows to distinguish between metallic and semiconducting carbon nanotubes and to follow the switching of semiconducting nanotube devices, as confi rmed by in situ electrical transport measurements. We demonstrate that high-density arrays of individual nanotube devices can be rapidly and simultaneously characterized. A leakage current model in combination with fi nite element simulations of the device electrostatics is presented in order to explain the observed contrast evolution of the nanotube and surface electrodes. This work serves to fill a void in electronic characterization of molecular device architectures. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users. This article is published with open access at Springerlink.com  相似文献   

16.
The present work examines the behavior of multiwall carbon nanotubes (MWCNT) inside AC electric fields created by three-dimensional electrodes. The response of carbon nanotubes stably suspended in water with the aid of a nonionic surfactant is monitored by combining microscopic observations with on-line measurements of the suspension resistivity. It is found that polarization effects induced by the externally applied AC electric field on MWCNTs can cause their unidirectional orientation and end-to-end contact that result in formations of spatially distributed, long-range, three-dimensional and electrically conducting structures that span the entire gap between the electrodes. The length of the formed structures, which in the present case was approximately 30 times larger than that of an individual carbon nanotube, can be controlled by adjusting the spacing between the electrodes. The influence of main experimental parameters, namely, MWCNT concentration, applied voltage, AC field frequency, and electrode surface topography on the suspension behavior is experimentally examined. Results are demonstrated for applied voltage values, AC field frequencies, and carbon nanotube concentrations in the range 4-40 Vptp, 10 Hz-5 MHz, and 0.001-2.0 wt%, respectively. While higher electric field strengths accelerate the formation of aligned structures, higher frequency values were found to result in suspensions that exhibit smaller electrical resistivity. Carbon nanotube dispersions exposed to an AC electric field exhibit a 100-fold or more decrease in their electrical resistivity, even when carbon nanotube concentrations as low as 0.005 wt% are used.  相似文献   

17.
综述了碳纳米管对聚丙烯力学性能改性、电学性能改性、结晶行为改性、阻燃和热稳定性能改性等方面的研究现状,包括单壁碳纳米管和多壁碳纳米管对聚丙烯改性的影响,展望了碳纳米管改性聚丙烯复合材料的发展前景。  相似文献   

18.
We investigate electronic transport in Josephson junctions formed by individual single-walled carbon nanotubes coupled to superconducting electrodes. We observe enhanced zero-bias conductance (up to 10e 2/h) and pronounced sub-harmonic gap structures in differential conductance, which arise from the multiple Andreev reflections at superconductor/nanotube interfaces. The voltage-current characteristics of these junctions display abrupt switching from the supercurrent branch to the resistive branch, with a gate-tunable switching current ranging from 65 pA to 2.5 nA. The finite resistance observed on the supercurrent branch and the magnitude of the switching current are in good agreement with the classical phase diffusion model for resistively and capacitively shunted junctions.  相似文献   

19.
Hybrids of carbon single-walled nanotubes (SWNT) with fragmented single or double-stranded DNA (fss- or fds-DNA) or polyC were studied by Atom Force Microscopy (AFM) and computer modeling. It was found that fragments of the polymer wrap in several layers around the nanotube, forming a strand-like spindle. In contrast to the fss-DNA, the fds-DNA also forms compact structures near the tube surface due to the formation of self-assembly structures consisting of a few DNA fragments. The hybrids of SWNT with wrapped single-, double- or triple strands of the biopolymer were simulated, and it was shown that such structures are stable. To explain the reason of multi-layer polymeric coating of the nanotube surface, the energy of the intermolecular interactions between different components of polyC was calculated at the MP2/6-31++G** level as well as the interaction energy in the SWNT-cytosine complex.  相似文献   

20.
Continuous repeated gate sweeping incorporated with substrate etching step is utilized to decrease the OFF state current in single-walled carbon nanotube field effect transistors with bundled carbon nanotubes. In particular, the effects of continuous repeated gate sweeping on transfer characteristic of transistors are examined. The etching step creates suspension in transistors at contact with metal electrodes as well as causing some single-walled carbon nanotubes to dramatically burn off by electrical current. By repeating gate sweeping, source-drain current gets smaller and smaller. This will eventually lead to the OFF state current less than 2 nA. Defects in the lattice of single-walled carbon nanotubes introduced by multiple gate sweeping could be the reason for this phenomenon. Contribution from possible hole trapping is also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号