首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
型材挤压过程金属变形流动的有限元仿真   总被引:2,自引:0,他引:2  
采用大变形弹塑性有限元理论,对典型型材角铝零件的挤压成形过程进行了全面有限元仿真和分析。深入研究了了型材挤压变形过程中金属变形流动规律和力学特征,对挤压工艺参数合理选择和优化奠定了基础。  相似文献   

2.
为了研究锥形件的挤压工艺,采用有限元分析软件ANSYS建立了铝材锥形件挤压成形的有限元分析模型.对挤压工艺的整个过程进行了模拟分析,获得了模具及试件内部的位移场、应力和应变分布,讨论了多种因素对挤压过程的影响.结果表明,锥形件挤压中挤压角与成形压力大体成指数函数关系,铝材挤压时挤压角一般不超过110°;接触摩擦的增大导致模具受力状况急剧恶化;凸模下压距离与应力之间的关系表明,挤压时要选择合适的断面缩减率.  相似文献   

3.
通过对双金属管材挤压成形的有限元模拟发现:当挤压模凹模带有锥角而芯棒为圆柱体时挤压铜铝双金属管材时常出现内层金属断裂的现象.为了解决这个缺陷通过反向思考提出了芯棒带有锥角而凹模为直筒的特殊的模具结构,并结合有限元软件Deform-3D分析了不同芯棒锥角下金属的变形情况,确定了合适的锥角大小,同时对双金属管材内外管材的厚度比也有限制要求,成功实现了铜铝双金属管件的挤压成形.通过对挤压过程中的芯棒进行强度校核对此挤压模具的结构进行了设计.  相似文献   

4.
等通道角挤压(ECAP)工艺可以积累足够的变形量来制备大块超细晶材料.通过对模具转角和模具中心角半径对挤压过程影响的有限元分析,得出了等通道弯曲角挤压过程的变形机理,得到了优化的模具几何尺寸和工艺参数,为等径弯曲角挤压模具设计提供了可靠的理论数据参考.为实现常温下块体金属材料的反复挤出,在不改变挤压件横截面几何形状的基...  相似文献   

5.
采用正交设计与有限元模拟相结合的方法对热等静压态的一种新型四代镍基粉末高温合金包覆挤压工艺进行了优化设计,分析了坯料初始温度、挤压速度、模具模角等关键参数对挤压棒材的应变、温度分布及成形载荷的影响.结果表明:随着挤压速度、模角的增大,挤压棒材的温度、应变及挤压载荷升高;随坯料初始温度的升高,挤压棒材温度升高,挤压载荷降...  相似文献   

6.
对纯铝进行等径角挤压、等径角挤压结合不同挤压比直接挤压及直接挤压,并采用刚-粘塑性3D有限元模拟进行分析。利用3D有限元模拟研究不同成形过程变形Al-1080的载荷-位移行为、塑性变形特征和有效塑性应变均匀性。用显微组织观察、显微硬度分布图、有效塑性应变和显微硬度值验证模拟结果。结果表明:模拟结果与实验结果一致;模拟载荷-位移曲线和最大载荷与实验结果接近;显微硬度分布图符合有效塑性应变等高线,证实了3D有限元模拟结果。等径角挤压工件的变形均匀性程度比其他变形过程的高。根据平均有效塑性应变计算了显微硬度值。预测显微硬度值与实验结果吻合。横向和纵向显微组织观察验证了不同成形过程中3D有限元模拟有效塑性应变和显微硬度分布结果。  相似文献   

7.
针对空心圆柱斜齿轮的几何特点,利用有限元软件Deform-3D对其闭式模锻工艺和空心坯料正挤压工艺进行模拟分析;利用有限元软件模拟在不同凹模入模角下的正挤压成形过程。结果表明:采用正挤压工艺比闭式模锻更合理;当凹模入模角为80°左右时,可得到几何形状满意的齿轮锻件,成形效果最好,适合空心斜齿轮的正挤压。该研究结果对空心圆柱斜齿轮精锻成形工艺的应用有一定的参考价值。  相似文献   

8.
FGH96合金挤压变形工艺数值模拟   总被引:2,自引:2,他引:0  
利用DEFORM-3D有限元软件对FGH96合金挤压工艺进行了研究,通过正交试验设计的方法研究了坯料温度、挤压速度、摩擦条件、模具锥角和模具工作带长度对挤压载荷的影响;同时具体研究了挤压速度和模具锥角对挤压载荷和挤压件温度的影响,以及不同条件下的等效应变的分布规律,并对挤压过程中可能出现的缺陷进行了预测,为工艺实验的研究提供了参考.  相似文献   

9.
根据AZ31镁合金流动应力-应变曲线建立了材料模型,应用Deform-3D软件对AZ31镁合金薄壁管材反挤压过程进行了有限元模拟,分析了挤压过程中坯料和管材内部温度场、损伤因子及流动速率的分布情况,着重探讨了不同挤压温度、挤压速度和模角对最高温升、等效应力、流动速率及挤压力峰值的影响。结果表明,AZ31镁合金薄壁管材反挤压的最佳工艺参数:挤压温度为310℃、挤压速度为1mm/s、模角为60°。  相似文献   

10.
利用Deform-3D软件对Al-Mg-Mn合金进行了不等径角挤压有限元分析,研究了变形过程中试样的等效应变、等效应力分布规律以及挤压载荷的变化情况,并与同等条件下的等径角挤压进行了对比。模拟结果表明,不等径角挤压过程中,坯料在转角处会同时发生剪切变形与径向挤压变形,所需的挤压力较等径角挤压更大,但单道次应变量显著提升,提高了挤压效率与晶粒细化能力;不等径角挤压后,应变沿坯料长度方向呈现分段分布,从料头区域至料尾方向逐渐增大,然而坯料横截面上各处应变差别较小、无应变层化现象。实验验证结果表明,UECAP工艺可以显著细化Al-Mg6-Mn0.7合金晶粒,与模拟结果相符。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号