首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was designed to examine the effects of long-term ozone exposure on nasal epithelia and intraepithelial mucosubstances (IM) throughout the nasal airways of F344/N rats. Animals were exposed to 0 (controls), 0.12, 0.5, or 1.0 ppm ozone, 6 h/day, 5 days/wk, for 20 mo. Rats were killed 1 wk after the end of the exposure, and nasal tissues were processed for light and electron microscopy. Standard morphometric techniques were used to determine epithelial cell densities and the amounts of IM in the surface epithelium lining the nasal airways. No mucous cells or IM were present in the epithelia lining the nasal lateral meatus and maxillary sinus of rats exposed to 0 or 0.12 ppm ozone. In contrast, rats exposed to 0.5 or 1.0 ppm ozone had marked mucous cell metaplasia (MCM) with numerous mucous cells and conspicuous amounts of IM in the surface epithelium lining these upper airways. Ozone-induced increases in total epithelial cells (i.e., epithelial hyperplasia) were present only in rats exposed to 1.0 ppm. The results of this study indicate that rats chronically exposed to 1.0 or 0.5 ppm, but not 0.12 ppm, ozone can develop marked MCM with significant increases in IM in both proximal and distal nasal airways. The epithelial changes observed throughout the nasal passages of ozone-exposed rats may be adaptive responses in an attempt to protect the upper and lower respiratory tract from further ozone-induced injury.  相似文献   

2.
A limitation of the NTP/HEI Collaborative Ozone Project conducted with F344/N rats at the Battelle Pacific North-west Laboratories in Richland, WA (1991-1993) was that the study used only one time point (20 months) to examine the chronic effects of exposure to ozone. Issues the design of that study could not address were (1) the status of cellular differentiation at earlier time points during the course of ozone exposure; (2) whether changes that appeared to be compensatory after 20 months of exposure were due to ozone, or were aspects of the natural aging process in rats; (3) the inability to define adequately which effects were related specifically to the prolonged duration of exposure; and (4) how and what changes brought about by the natural aging process may have overridden or confounded a clear definition of the effects of exposure to ozone at ambient concentrations (e.g., 0.12 parts per million [ppm]), which are of most concern with long-term exposure to this pollutant. The present study examined the effects of a 3-month exposure to ozone under conditions identical to those of the 20-month NTP/HEI Collaborative Ozone Project. In our facilities at the University of California, Davis, we exposed 42 male F344/N rats to either filtered air or 0.12 or 1.0 ppm ozone. After 3 months of exposure to 1.0 ppm ozone, changes in the distribution of superoxide dismutase (SOD) in the copper-zinc (Cu-Zn) form were shown by a pattern of reduced staining in terminal bronchioles and the centriacinar region; and the manganese (Mn) form of SOD was elevated within the centriacinar region. Further analysis by transmission electron microscopy and immunogold labeling confirmed that Mn SOD was elevated within epithelial type II cells immediately distal to the bronchiole-alveolar duct, junction (BADJ). The trachea, three major bronchi, and a short-length and long-length airway path relative to the trachea were examined by morphometric techniques. The pulmonary acini arising from each of these two paths were also examined morphometrically as a function of distance into the alveolar duct. Cellular changes occurring in each of these anatomical regions after 3 months of exposure were analyzed and compared to the changes noted after the 20-month ozone exposures. We found significant increases in the volume density of nonciliated epithelial cells lining the trachea and caudal bronchi as well as in the proximal and terminal bronchioles of the cranial region at a concentration of 1.0 ppm ozone after both 3 and 20 months of exposure. Remodeling of the centriacinar region, particularly within the cranial region of the lungs after exposure to 1.0 ppm ozone, was statistically significant at both 3 and 20 months. No statistically significant effects were noted following exposure to 0.12 ppm ozone for either 3 or 20 months. An important finding was that age did not influence the effect of ozone on the lungs of rats. We conclude that long-term exposure to ozone, rather than the effects of aging, lead to significant alterations of epithelial cell populations lining the airways and centriacinar region of the lung. Marked cellular changes were noted after exposure to 1.0 ppm ozone, but not to 0.12 ppm.  相似文献   

3.
We have investigated the acute lung toxicity of urban particulate matter in interaction with ozone. Rats were exposed for 4 hours to clean air, ozone (0.8 ppm), the urban dust EHC-93 (5 mg/m3 or 50 mg/m3), or ozone in combination with urban dust. The animals were returned to clean air for 32 hours and then injected (intraperitoneally) with [3H]thymidine to label proliferating cells and killed after 90 minutes. The lungs were fixed by inflation, embedded in glycol methacrylate, and processed for light microscopy autoradiography. Cell labeling was low in bronchioles (0.14 +/- 0.04%) and parenchyma (0.13 +/- 0.02%) of air control animals. Inhalation of EHC-93 alone did not induce cell labeling. Ozone alone increased (P < 0.05) cell labeling (bronchioles, 0.42 +/- 0.16%; parenchyma, 0.57 +/- 0.21%), in line with an acute reparative cell proliferation. The effects of ozone were clearly potentiated by co-exposure with either the low (3.31 +/- 0.31%; 0.99 +/- 0.18%) or the high (4.45 +/- 0.51%; 1.47 +/- 0.18%) concentrations of urban dust (ozone X EHC-93, P < 0.05). Cellular changes were most notable in the epithelia of terminal bronchioles and alveolar ducts and did not distribute to the distal parenchyma. Enhanced DNA synthesis indicates that particulate matter from ambient air can exacerbate epithelial lesions in the lungs. This may extend beyond air pollutant interactions, such as to effects of inhaled particles in the lungs of compromised individuals.  相似文献   

4.
Ozone is known to yield hydroxyl radical, which may contribute to ozone-mediated lung injury. In the presence of hydroxyl radical, salicylate is hydroxylated to form 2,3-dihydroxybenzoic acid (2,3-DHBA). There is no evidence of enzymatic formation of 2,3-DHBA. We hypothesized that salicylate hydroxylation might be used as a biomarker indicating human exposure to ozone. Healthy, nonsmoking volunteers, 18 to 34 yr of age, were given acetylsalicylic acid (975 mg) or placebo orally 0.5 h before an exposure. Subjects were exposed to ozone (0.12 or 0.4 ppm) or filtered air in an environmental chamber for 2 h, while performing intermittent exercise. Results indicate significant decrements in FVC, FEV1.0, forced expiratory flows at 50% and 75% of FVC, and peak expiratory flow rate, and an increase in airway resistance, after exposure to 0.4 ppm ozone in comparison with air control (p < 0.05). Exposure to 0.4 ppm ozone also resulted in increased symptom numbers and severity (p < 0.05). When subjects were exposed to 0.12 ppm ozone, changes of pulmonary function and symptoms reported were minimal. Plasma concentration of 2,3-DHBA was significantly increased after exposure to 0.12 and 0.4 ppm ozone in comparison with air control (p < 0.05). There was a significant correlation between ozone-induced changes of pulmonary function and normalized salicylate hydroxylation (p < 0.05). The results indicate that exposure to ozone can initiate in vivo production of hydroxyl radical, a potent reactive agent. Salicylate hydroxylation may then serve as a sensitive dosimetric biomarker for ozone exposure, even at subclinical ozone exposure levels.  相似文献   

5.
Ozone and the oxides of sulfur are common environmental pollutants. The acute pulmonary lesions caused by ozone and sulfuric acid mist in rats and guinea pigs have been characterized. Rats are not affected by sulfuric acid mist in concentrations up to 100 mg/m3 except for reduced body weight at the higher doses. A true alveolitis develops in guinea pigs exposed to more than 20 mg/m3 sulfuric acid mist. The ozone lesion is primarily confined to the terminal bronchioles and proximal alveoli. In combination studies with up to 2 ppm ozone and up to 10 mg/m3 sulfuric acid mist, the pulmonary lesion and lung/body weight data were essentially the same as in exposure to ozone alone, and the number of statistically significant synergistic effects in rats and guinea pigs was about what one would expect to observe by chance alone.  相似文献   

6.
OBJECTIVE: To investigate the effects of ozone and airway inflammation on indices of oxidant injury in horses. ANIMALS: 5 clinically normal horses and 25 horses referred for poor performance. PROCEDURE: Blood, tracheal wash, and bronchoalveolar lavage fluid samples were collected before and after ozone exposure (n = 5) or from clinical cases (n = 25), and were analyzed for reduced glutathione (GSH), glutathione disulfide (GSSG), and free and total iron (Fe) values. A scoring system (0 to 5) was used to assess airway inflammation on the basis of clinical signs and cytologic analysis of the tracheal wash and bronchoalveolar lavage fluid samples. RESULTS: Ozone induced significant (P < 0.05) increases in GSH (195.4 +/- 68.5 microM), GSSG (19.4 +/- 6.4 microM), and free (25.5 +/- 16.1 microM) and total (93.1 +/- 13.4 microM) Fe values in the pulmonary epithelial lining fluid, compared with preozone samples (49.2 +/- 18.6, 2.4 +/- 1.2, 0.0, and 33.1 +/- 5.9 microM, respectively). The presence of airway inflammation (19/25) was associated with high GSSG and free and total Fe, but not GSH, values in epithelial lining fluid, compared with values for clinically normal horses (6/25). There were no differences in the systemic values of GSH, GSSG, and free and total Fe between any of the groups. A strong correlation (r = 0.84; P < 0.001) existed between inflammation score and the glutathione redox ratio (GSSG/[GSH + GSSG]) in the 25 horses admitted for clinical examination. CONCLUSIONS: Oxidant injury in the lung will induce changes in the glutathione status and Fe homeostasis that could affect pathogenesis of the disease. CLINICAL RELEVANCE: Measurement of indices of oxidant injury may be useful in the diagnosis of airway inflammation and the response to inhaled oxidants.  相似文献   

7.
Short-term exposure to high concentrations of ozone has been shown to increase airway responsiveness in normal humans and in all laboratory animal species studied to date. While our knowledge concerning the pulmonary effects of single exposures to ozone has increased rapidly over recent years, the effects of repeated exposures are less understood. The goal of the present study was to determine whether airway responsiveness is increased after near-lifetime exposure to ozone. Airway segments representing approximately eighth generation airways were isolated from Fischer 344 rats of both genders that had been exposed for 6 hr per day, 5 days per week for 20 months to 0, 0.12, 0.5, or 1.0 parts per million (ppm) ozone. Circumferential tension development was measured in isolated airways in response to bethanechol, acetylcholine, and electrical field stimulation. Responsiveness of the airways to the contractile stimuli was described by the effective dose or frequency that elicited half-maximum contraction (ED50) and the maximum response. Since ozone exposure is associated with remodeling of peripheral airways, smooth muscle area was determined and tension responses were normalized to the area measurements. Before normalization of tension data to smooth muscle area, neither the ED50 nor maximum response of small bronchi to the contractile stimuli was altered after chronic ozone exposure. Smooth muscle area was greater in airways isolated from animals that had been exposed to 0.5 ppm ozone. After accounting for smooth muscle area, maximum responses of the small bronchi isolated from male rats were significantly reduced after 0.12 and 0.5 ppm ozone. Although not significant statistically, a similar trend was observed in airways isolated from female rats. These results suggest that the increase in airway responsiveness associated with acute ozone exposure does not persist during near-lifetime exposure. Although the mechanism responsible for the adaptation to the effects of O3 on airway responsiveness is unknown, the results indicate that smooth muscle cell function was compromised by the chronic exposure. The mechanism(s) responsible for mediating this effect and the relevance of these results to humans remains to be determined.  相似文献   

8.
The breath-to-breath measurement of total respiratory ozone (O3) uptake requires monitoring O3 concentration at the airway opening with an instrument that responds rapidly relative to the breathing frequency. Our original chemiluminescent analyzer, using 2-methyl-2-butene as the reactant gas, had a 10% to 90% step-response time of 110 msec and a minimal detectable concentration of 0.018 parts per million (ppm) O3 (Ben-Jebria et al. 1990). This instrument was suitable for respiratory O3 monitoring during quiet breathing and light exercise. For this study, we constructed a more self-contained analyzer with a faster response time using ethylene as the reactant gas. When the analyzer was operated at a reaction chamber pressure of 350 torr, an ethylene-to-sample flow ratio of 4:1, and a sampling flow of 0.6 liters per minute (Lpm), it had a 10% to 90% step-response time of 70 msec and a minimal detectable concentration of 0.006 ppm. These specifications make respiratory O3 monitoring possible during moderate-to-heavy exercise. In addition, the nonlinear calibration and the carbon dioxide (CO2) interference exhibited by the original analyzer were eliminated. In breath-to-breath measurements in two healthy men, the fractional uptake of O3 during one minute of quiet breathing was comparable to the results obtained by using a slowly responding commercial analyzer with a quasi-steady material balance method (Wiester et al. 1996). In fact, fractional uptake was about 0.8 regardless of O3 exposure concentration (0.11 to 0.43 ppm) or ventilation rate (4 to 41 Lpm/m2).  相似文献   

9.
Recent advances in quantitative morphology provide all the tools necessary to obtain structural information in the lung that can be quantified and interpreted in the three-dimensional world of toxicology. Structural hierarchies of conducting airways and parenchyma of the lung provide: (1) numbers of cells per airway, lobe, or lung; (2) surface areas of cells, airways, and alveoli; (3) length of airways and vessels; and (4) volumes of cells, alveoli, airways, vessels, and individual lobes or the entire lung. Unbiased sampling of these subcompartments of the lung requires fractionation of lobes or individual airways. Individual airways of proximal and distal generations are obtained by airway microdissection along one axial pathway and comparisons made between airway generations. Vertical sections of selected airways are used to sample epithelium and interstitium. Using this unbiased approach of quantitative morphology, we have shown that inhalation of low ambient concentrations of ozone ([O3]0.15 ppm) near or at the United States National Ambient Air Quality Standard (NAAQS) (0.12 ppm O3) induces significant alterations in bronchiolar epithelium and interstitium in nonhuman primates but not rats. The alterations do not appear to be concentration- or time-dependent, thereby bringing into question the current NAAQS that may be at or above the threshold for distal airway injury in primates. Unbiased morphometric methods are critical in a quantitative evaluation of toxicological injury of mammalian tracheobronchial airways.  相似文献   

10.
Tracheal explants from rats exposed to 0.8 ppm (1.9 mg per m3) of ozone 8 hours per day for 1 to 90 days were incubated in culture with glucosamine labeled with carbon-14 or hydrogen-3. Compared with tracheas from control rats exposed to filtered air, the explants demonstrated a decreased rate of glycoprotein secretion for exposure intervals of as long as one week, followed by a rebound to an increased rate of glycoprotein secretion for at least 12 weeks of continued exposure to ozone. Detailed study of the behavior of labeled glycoproteins from the culture medium on chromatography on columns of BioGel A-150m demonstrated that the ratio of the low to high molecular weight peaks increased when there was an increased rate of glycoprotein secretion. This is the first report of a direct biochemical effect induced by ozone on airway metabolism.  相似文献   

11.
Clara cell 10 kDa protein (CC10) has been thought to be fairly specific to Clara cells and a major secretory protein that is both synthesized and released from Clara cells. In the present study, morphometric analyses of the immunohistochemical expression of CC10 were carried out on the bronchioles of human neonates with congenital diaphragmatic hernia (CDH) and then compared with morphometric analyses from a gestationally and postnatally age-matched control group in order to clarify the immaturity of Clara cells in CDH lungs. No difference was found in CC10 expression between the affected side and the unaffected side of the lungs in the CDH group. However, compared with the lungs of the control group, the CDH group showed a significant decrease in CC10 expression, namely, the ratio of CC10-positive cells per bronchiole, per unit perimeter of bronchiole, and per unit bronchiolar surface area. These results suggest that in the lungs of CDH cases, a possible delay in either functional maturation or the development of CC10 synthesis by the bronchioles may exist, and this retardation of functional maturation of the airway is also considered to play a role in the postnatal respiratory insufficiency observed in CDH patients.  相似文献   

12.
Tropospheric ozone exerts well-described toxic effects on the respiratory tract. Less documented, by contrast, is the ability of ozone to induce protective mechanisms against agents that are toxic to the lungs. In particular, interactions between ozone and the sympathetic nervous system have never been considered. Using a model of permeability edema in isolated perfused rabbit lungs, we report here that, immediately after exposure of rabbits to 0.4 ppm ozone for 4 hr, the pulmonary microvascular responses to acetylcholine and substance P are completely blocked. Several lines of evidence, including partial inhibition of the ozone-induced protective effect by several drugs (alpha2- and beta-adrenergic antagonists, neuropeptide Y antagonist, guanethidine), measured levels of released catecholamines in blood and urine and the in vitro response of isolated lungs exposed to 0.4 ppm ozone all seem to suggest that ozone can stimulate pulmonary adrenergic fibers and induce the local release of catecholamines and neuropeptide Y, this resulting in transient protection against pulmonary edema. We also showed that, 48 hr after the exposure, ozone increased the baseline microvascular permeability and the response to low concentrations of acetylcholine.  相似文献   

13.
Multi-center European evaluation of HIV testing on serum and saliva samples   总被引:1,自引:0,他引:1  
Sulphur dioxide (SO2) is an air pollutant implicated in the initiation of asthmatic symptoms. Glutathione (GSH) has been proposed to play a role in detoxification of SO2 through the sulfitolysis of glutathione disulphide (GSSG) to S-sulphoglutathione (GSSO3-). Rats were exposed to concentrations of SO2 between 5 and 100 ppm for 5 hr a day between 7 and 28 days. Lung injury as assessed by bronchoalveolar lavage and tissue GSH status were evaluated. SO2 5 ppm failed to elicit any lung injury or inflammatory response but did deplete GSH pools in lung, liver, heart and kidney. Activities of gamma-glutamylcysteine synthetase (GCS), glutathione peroxidase (GPx), glutathione S-transferase (GST) and glutathione reductase (GRed) in lung were lowered relative to those in control animals. In liver, GRed activity was decreased. SO2 50 ppm exposure also failed to elicit injury or inflammation but did lower inflammatory cell numbers in the circulation. Rats exposed to 50 ppm SO2 maintained tissue GSH status, but activities of GCS, GPx, GRed and gamma-glutamyltranspeptidase in lung and hepatic GRed and GPx were significantly lower than in control rats. Unaltered GST activity in lung and liver was suggestive of an impairment of the sulfitolysis reaction in these animals, perhaps through lower substrate flux through the GPx reaction, as GSSO3- is a known inhibitor of GST in the rat. Rats exposed to 100 ppm SO2 exhibited evidence of inflammation (120-fold increase in neutrophil numbers recovered in lavage fluid) and like the 5 ppm exposed rats had lower tissue GSH concentrations and GSH-related enzyme activities in lung. We conclude that sulfitolysis of GSSG does occur in vivo during SO2 exposure and that SO2, even in the absence of pulmonary injury, is a potent glutathione depleting agent.  相似文献   

14.
Repeated exposure to high concentrations of ozone results first in augmentation (typically on the second day) and then attenuation of pulmonary response in humans. To determine the effects of repeated prolonged low-concentration ozone exposure, we exposed 17 healthy nonsmoking male subjects to 0.12 ppm ozone for 6.6 h on 5 consecutive days. Subjects were also exposed once to filtered air. Volunteers exercised at a ventilation of approximately 39 L/min for 50 min of each hour during the exposure. Spirometry, plethysmography, and symptom responses were obtained before, during, and after each exposure. Nasal lavage and aerosol bolus dispersion were obtained before and after exposure. Spirometry decreased and symptoms increased on the first day. Responses were less on the second day compared with those on the first day, and they were absent compared with control values on the subsequent 3 days of ozone exposure. Percent change in FEV1 after ozone exposure compared with that after air exposure averaged -12.79, -8.73, -2.54, -0.6, +0.18% for Days 1 to 5 of ozone exposure, respectively. FEV1 responses ranged from a zero to 34% decrease on Days 1 and 2. After each exposure, we determined the ratio of SRaw after inhaling a fixed dose of methacholine to SRaw after inhaling saline aerosol, as an index of airway responsiveness. Airway responsiveness was significantly increased after each ozone exposure. The mean ratios were 2.22, 3.67, 4.55, 3.99, 3.24, and 3.74 for filtered air and ozone Days 1 to 5, respectively. Symptoms of cough and pain on deep inspiration increased significantly on ozone Day 1 only.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
In this study, we compared the cytotoxic and genotoxic effects of hydrogen peroxide and ozone on cultured human airway epithelial cells in primary culture. Both agents caused a dose-dependent loss in the replicative ability of epithelial cells and at higher levels of exposure caused acute cytotoxicity as measured by release of lactate dehydrogenase. Differences were seen, however, between the agents' effects with regard to induction of DNA single strand breaks as measured by alkaline elution:; whereas single-strand breaks were detected in significant amounts at concentration of hydrogen peroxide that cause acute cytotoxicity, none were detected at any of the levels of ozone exposure examined. A difference was also seen in the ability of the iron chelator deferoxamine to protect cells from the effect of the two oxidants. Preincubation of cultures with deferoxamine appreciably attenuated the toxicity of hydrogen peroxide but not of ozone. These data suggest that ozone has significant toxic effects on bronchial epithelial cells not mediated through the generation of hydrogen peroxide or hydroxyl radical. Furthermore, the data indicate that the inhibiting action of ozone on cell replicative ability is not mediated through a mechanism related to DNA single strand breaks.  相似文献   

16.
The effects of short-term ozone exposure on the lung function and surface activity of surfactant subtypes isolated from rat lung lavage were studied. Rats were exposed to 0.8 ppm ozone for 2 or 12 hr. The surface activity of surfactant was affected by ozone exposure, whereas distinct morphological changes in bronchoalveolar lavage or in the surfactant subtypes were not observed. Adsorption experiments indicated that bronchoalveolar lavage from rats exposed for 12 hr to ozone remained at lower equilibrium surface pressures than lavage from control rats. These observations suggest interference of inflammatory proteins with the surface film. Extracted surfactant, containing only lipids and surfactant proteins B and C, had a decreased adsorption rate after ozone exposure. These results suggest that the activity of one or both of the hydrophobic surfactant proteins (SP-B and SP-C) was affected by ozone.  相似文献   

17.
Many persons are exposed to preservatives/biocides based on methylchloroisothiazolinone/methylisothiazolinone (MCI/MI), since toiletries and cosmetics, as well as products/water-based systems used occupationally, may all contain MCI/MI. In toiletries and cosmetics, the MCI/MI concentration is often below 15 ppm (0.0015%). In some industries, workers handle high concentrations of MCI/MI, which can cause chemical burns and induce sensitization if skin is exposed. Contact allergy to MCI/MI is common and reports on chemical burns have been published. Thus, there is a need for prevention of skin diseases caused by MCI/MI. The inactivation of MCI/MI by glutathione (GSH) in emollients, containing different amounts of lipids, was studied by HPLC. Various amounts of GSH were added to Fenuril, Essex, and Locobase, giving 3 preparations of each emollient containing 0.10%, 0.50% and 2.0% GSH, respectively. The inactivation of 15 ppm MCI/MI and the total inactivating capacity of GSH in these preparations, kept at room temperature and refrigerated, was studied over a period of 6 months. The inactivating capacity of GSH in the emollients was almost equivalent, regardless of the lipid contents of the emollients, type of storage and age. On the other hand, the GSH concentration in the emollients had a crucial importance on the inactivation of MCI/MI. Emollients containing 2% GSH were capable of inactivating up to 2400 ppm MCI/MI.  相似文献   

18.
BACKGROUND: There is accumulating evidence from various countries, including the UK, that ground level ozone concentrations are associated with increased daily hospital admissions for respiratory diseases. This paper estimates the impact of ozone episodes on daily hospital admissions for respiratory disease in Great Britain by combining locally based exposure-response relationships with mapped estimates of ozone exposure for the population in the summers of 1993 and 1995. METHODS: For the given years the available ozone measurements were used to construct maps of ozone concentrations for each day. The population exposed to a given concentration of ozone on a particular day was calculated from census data using a geographical information system. The additional hospital admissions for respiratory disease were then estimated using a regression coefficient for London. RESULTS: It is estimated that 0.10% (a total of 184) and 0.35% (a total of 643) of hospital admissions for respiratory disorders during the summers of 1993 and 1995, respectively, can be attributed to levels of ozone above 50 ppb (the recommended air quality standard for the UK). A sensitivity analysis for 1995 found that, if no threshold is assumed, the estimate is increased by about twenty fold (6% of admissions attributable). CONCLUSIONS: The additional hospital admissions for respiratory disease attributable to ozone are very small in both absolute and relative terms if a threshold of 50 ppb is assumed, but this estimate is very sensitive to threshold assumptions.  相似文献   

19.
In order to demonstrate whether specific cytotoxic T cells could be induced in lung parenchyma, C57BL/6 mice were immunized by the intrapulmonary route with allogenetic tumor cells (P815). Ten days after administration of 20 x 10(6) allogeneic cells, peak concentrations of cytotoxic cells were found in lung, tracheobronchial lymph node, and spleen. With reduction in immunizing dose, lytic activity disappeared from spleen and lymph node, but persisted in lung. The cytolytic activity was specific for the immunizing alloantigen, was abolished by antitheta serum, and could not be attributed to macrophages. For comparison, C57BL/6 mice were immunized by the intraperitoneal route with 20 x 10(6) P815 cells. The expected cytolytic activity was found in spleen and lymph nodes: however, unexpectedly high levels of cytolytic activity were also found in pulmonary lymphocytes. This activity was confirmed using a wide range of effector to largest cell ratios in the assay system. Quantitative cytolytic assays demonstrated that the maximum rate of cytolysis by pulmonary lymphocytes obtained from mice immunized intraperitoneally exceeded by 10- to 20-fold the rate of cytolysis by pulmonary lymphocytes obtained from mice receiving intrapulmonary immunization. These data demonstrate that cytolytic T-lymphocytes appear in lung parenchyma after either intrapulmonary or intraperitoneal immunization and that the intraperitoneal route is far more efficient than the intrapulmonary route. This cell-mediated immune mechanism potentially is available for host defense of respiratory tissue.  相似文献   

20.
Healthy male and female human volunteers were exposed to 50 ppm or 100 ppm trichloroethylene (Tri) by inhalation for 4 h. Blood and urine samples were taken at various times before, during, and after the exposure period for analysis of glutathione (GSH), related thiols and disulfides, and GSH-derived metabolites of Tri. The GSH conjugate of Tri, S-(1,2-dichlorovinyl)glutathione (DCVG), was found in the blood of all subjects from 30 min after the start of the 4-h exposure to Tri to 1 to 8 h after the end of the exposure period, depending on the dose of Tri and the sex of the subject. Male subjects exposed to 100 ppm Tri exhibited a maximal content of DCVG in the blood at 2 h after the start of the exposure of 46.1 +/- 14.2 nmol/ml (n = 8), whereas female subjects exposed to 100 ppm Tri exhibited a maximal content of DCVG in the blood at 4 h after the start of the exposure of only 13.4 /- 6.6 nmol/ml (n = 8). Pharmacokinetic analysis of blood DCVG concentrations showed that the area under the curve value was 3.4-fold greater in males than in females, while the t1/2 values for systemic clearance of DCVG were similar in the two sexes. Analysis of the distribution of individual values indicated a possible sorting, irrespective of gender, into a high- and a low-activity population, which suggests the possibility of a polymorphism. The mercapturates N-acetyl-1,2-DCVC and N-acetyl-2,2-DCVC were only observed in the urine of 1 male subject exposed to 100 ppm Tri. Higher contents of glutamate were generally found in the blood of females, but no marked differences between sexes were observed in contents of cyst(e)ine or GSH or in GSH redox status in the blood. Urinary GSH output exhibited a diurnal variation with no apparent sex- or Tri exposure-dependent differences. These results provide direct, in vivo evidence of GSH conjugation of Tri in humans exposed to Tri and demonstrate markedly higher amounts of DCVG formation in males, suggesting that their potential risk to Tri-induced renal toxicity may be greater than that of females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号