首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 578 毫秒
1.
沼气发动机快速燃烧系统试验研究   总被引:3,自引:0,他引:3  
从分析沼气燃烧特点出发,提出改善火花点火式沼气发动机性能的快速燃烧方法,并开发出具有风扇形燃烧室的新型快速燃烧系统。该燃烧系统在快速压缩膨胀装置上进行模拟,并在2135沼气发动机上进行实机试验,结果表明:风扇形燃烧室对加快混合气燃烧速度,改善沼气发动机中的燃烧过程有明显的效果;新型燃烧系统对改善火花点火式沼气发动机可靠性与经济性具有明显的效果。  相似文献   

2.
本文介绍了S195型沼气柴油机提高热效率的试验研究成果。论述了功率、燃烧过程和沼气的燃烧特性。分析了影响沼气耗量和热效率的各种因素,提出了改进措施;使双燃料的峰值热效率由26%增至38%以上,最大功率由8.8kW增至10.6kW。同时柴油机的性能也得到改善,显著地提高了发动机的经济性和可靠性。  相似文献   

3.
引入组合燃烧理论,设计了电控柴油/甲醇双燃料喷醇系统和发动机工作时的控制策略,对改装后的喷醇发动机电站机组试验了发动机的动力性、经济性和排放性能以及机组的运行可靠性。试验表明:动力性指标完全能满足机组需求,经济性大大提高,排放明显改善,调速性能较为稳定。  相似文献   

4.
活塞式内燃机燃用沼气的研究   总被引:11,自引:0,他引:11  
简要介绍了沼气的产生、成分、物理化学性能以及活塞式内燃机燃用沼气可能发生的燃烧速度慢、后燃严重、排气温度高与热负荷大等问题,提出了掺烧和快速全烧两大措施;并相应研制出沼气-柴油双燃料发动机和火花点火全沼气发动机发电机组来适应这两种燃烧方式,取得了较好效果。最后提出将沼气提纯、加压,使其性能接近压缩天然气来作为汽车燃料的方案。  相似文献   

5.
沼气中含有大量的二氧化碳,其燃烧速度较慢,且空然比范围窄,热值不高,这些因素导致全烧式沼气发动机的起动性能差在本文的研究中,通过采取提高沼气燃烧速度,确定最佳起动空燃比等措施,较好地改善了全烧式沼气友动机的起动性。  相似文献   

6.
引入组合燃烧理论,设计了电控柴油/甲醇双燃料喷醇系统和发动机工作时的控制策略,对改装后的喷醇发动机电站机组试验了发动机的动力性、经济性和排放性能以及机组的运行可靠性。试验表明:动力性指标完全能满足机组需求,经济性大大提高,排放明显改善,调速性能较为稳定。  相似文献   

7.
火花点火发动机实现稀薄燃烧的技术措施   总被引:4,自引:1,他引:4  
本文介绍了火花点火发动机稀薄燃烧的特点及实现稀薄燃烧所采用的关键技术措施,文章指出:实现稀薄燃烧是提高车用火花点火发动机的经济性和改善排放性能的重要途径。  相似文献   

8.
将研究柴油机和汽油机的快速压缩膨胀机进行改制,使之可模拟气体燃料发动机中的燃料工将该快速压缩膨胀机用于模拟沼气发动机燃料过程的研究。结果表明:该快速压缩膨胀机可较好地模拟发动机中的燃烧过程,并具有燃烧室结构,工况参数可调等优点。  相似文献   

9.
以沼气为例分析了变组分燃料对发动机性能的影响,论述了国内外变组分燃料沼气、煤层气和高炉煤气的研究进展,介绍了采用定容燃烧装置和发动机研究变组分燃烧特性的方法,并提出了今后的研究方向。  相似文献   

10.
利用AVL FIRE软件对不同结构的进气道方案进行瞬态模拟计算,分析了进气道结构对天然气发动机燃烧过程的影响规律。研究结果表明,湍动能的变化与涡流比的大小关系不大,主要受Z方向滚流比的影响;燃烧速率快慢与缸内平均湍动能高低并非一一对应关系,燃烧速率主要依赖于火花塞周围的湍动能分布情况。通过改进气道Ⅲ方案与气门座圈连接处的入射角度,缸内滚流与涡流运动均明显增强,且缸内湍动能分布显著改善,提升了化学反应速率与火焰传播速度,燃烧特性显著改善。两个试制进气道方案的台架试验结果表明,气道Ⅲ改进方案能够改善天然气发动机的经济性、可靠性与高速动力性。  相似文献   

11.
热裂解生物质气发动机燃烧特性试验   总被引:2,自引:0,他引:2  
利用农林废弃物可控热裂解产生的生物质气作为火花点火发动机的燃料,测最火花点火生物质气发动机的示功图,分析了生物质气的燃烧放热特性.试验结果表明:发动机怠速点火性能较好,小功率时放热速度较慢,大功率时燃烧速度较快,燃烧较充分;火焰发展期随点火提前角的增大而变长,燃烧相位角随点火提前角、负荷的增大而提前,速燃期随负荷的增加、点火提前角的增大逐渐缩短;生物质气中的氢含量加快了生物质气发动机的燃烧速度.  相似文献   

12.
生物制气-柴油双燃料发动机燃烧及排放分析   总被引:1,自引:0,他引:1  
采用气化炉热解气化各种农林废弃的生物质,得到可燃生物制气。将柴油机改制成双燃料发动机,用生物制气作为主要燃料,由柴油引燃。测量生物制气-柴油双燃料发动机在最大扭矩转速时的气缸压力及废气排放,分析燃烧特性及对排放物生成的影响,并对比分析柴油机与双燃料发动机的差别。  相似文献   

13.
Biogas can be used as a less expensive continuance renewable fuel in internal combustion engines. However, variety in raw materials and process of biogas production results in different components and percentages of various elements, including methane. These differences make it difficult to control the combustion, effectively, in internal combustion engines. In this research, under cleaning and reforming process, biogas components were fixed. Then the effect of reformed biogas (R.BG) was investigated, numerically, on the combustion behavior, performance and emissions characteristics of a RCCI engine. A 3D-computational modeling has been performed to validate a single-cylinder compression ignition engine in conventional diesel and dual-fuel operations at 9 bar IMEP, 1300 rpm. Then, the combustion model of the RCCI engine was simulated by replacing diesel fuel with 20%, 40% and 60% of R.BG as a low reactivity fuel while remaining constant input total fuel energy per cycle. The results demonstrated that when the R.BG substitution ratio increases with a constant equivalence ratio of 0.43, the mean combustion temperature decreases to 1354 K, 1312 K, 1292 K which are about 3.5%, 6.6%, 7.9% lower than the conventional diesel combustion, respectively. The maximum in-cylinder pressure increases up to 22.63%. Instead, it results in 2.3%, 7.9%, and 14.5% engine power output losses, respectively. Also, the NOx emission, against CO, is decreased by 50%. Soot and UHC emissions were found to be slightly decreased while was used R.BG more than 40%.  相似文献   

14.
通过搭建小型实验平台,对基于燃气内燃机的热电联产系统在不同燃料下的机组性能和系统性能进行了探究。通过测得的发电功率和燃气流量计算出燃气发电机在不同负荷下的发电效率和燃烧功率,进而计算出不同燃料下热电联产系统的系统总效率并加以比较。试验结果表明,燃气内燃机组的发电效率和系统总效率随着电负荷的增大而增大;使用沼气作为燃料时,系统总效率最高可达到46.96%,高于使用液化石油气作为燃料时的系统总效率;用电负荷是影响系统各种效率的主要因素之一。  相似文献   

15.
双燃料发动机放热率计算和试验分析   总被引:2,自引:0,他引:2  
提出了一个描述双燃料发动机燃烧特性的多区模型,模型将气体燃料的燃烧和引燃柴油的燃烧分别进行考虑。建立了由实测示功图求解双燃料发动机放热率的微分方程式,开发了计算双燃料发动机燃烧放热规律的软件,并在一台生物质气-柴油双燃料发动机上与传统柴油机放热率计算模型进行了试验验证和对比。研究和试验结果表明,用传统柴油机分析方法计算双燃料发动机的放热率峰值偏大,所计算的缸内工质平均温度偏高,新模型计算的结果与实际情况更吻合。  相似文献   

16.
Increasing demand for energy accompanied by environmental concerns has raised the requirement for limiting the use of fossil fuels in energy generation and transportation applications. Among the green and renewable energy-based solutions, biogas is quite promising since it could be implemented for power generation applications (engines driving generators and pump sets) in rural areas, at domestic and industrial scales with lower capital investment and production cost by using the agricultural crop residues and other domestic biomass sources as raw materials. However, the composition of biogas varies depending on the raw materials, and higher concentration of carbon dioxide in biogas results in combustion variations affecting engine durability. This review focuses on the role of biogas in achieving sustainable development goals with an emphasis on its utilization in gaseous fuelled spark-ignited engines. Recent progress in biogas production and upgradation techniques are also detailed. Challenges related to the stability and characteristics of biogas fuelled spark-ignited engines could be addressed by either modifying the physical parameters of the engine or by enhancing the fuel quality (upgradation to biomethane or blending with hydrogen). A comprehensive review on the effects of these approaches on the performance, combustion, and emission characteristics of biogas-fuelled engines is discussed in detail with a note on engine operating parameters.  相似文献   

17.
Technology related to biogas has been steadily developed over the last 50 years from small individually designed units to larger production plants. The development, however, has largely taken place on the side of biogas production and anaerobic waste treatment. Utilization of the gas produced by these methods has only recently been the subject of more scientific evaluation. The transformation of energy through biogas into the thermodynamically higher valued mechanical energy successfully and economically is now the most important research area in this field.Of the engine work already published, most concerns spark-ignited engines. The authors’ research work concerns the use of biogas in dual-fuel diesel engines. It examines engine performance using simulated biogas of varying quality representing the range of methane:carbon dioxide composition which may be encountered in gas from different sources. The total programme includes the effects of biogas quality and of the proportion of energy from pilot fuel injection over a range of speeds and loads, investigations into the performance parameters over a range of compositions of gaseous mixture. A two-cylinder, indirect-injection diesel engine of stationary type is being used as the first experimental test bed in this work and the variation of quality is provided by mixing natural gas and carbon dioxide. A data acquisition system for in-cylinder pressure and crank angle is being used successfully and some emissions measurements are also available, particularly for CO and O2.One of the authors is from India where there is thought to be considerable potential for exploiting the gaseous products from resources such as biogas, landfill and sewage gas through small stationary dual-fuel engines for irrigation and CHP applications. The nature of combustion process in the dual-fuel engine is examined by the authors through pressure-crank angle data and studies of characteristics affecting engine efficiency.  相似文献   

18.
In this study, combustion characteristics of various biogas/air mixtures with hydrogen addition at elevated temperatures were experimentally investigated using bunsen burner method. Methane, CH4, was diluted with different concentrations of carbon dioxide, CO2, 30 to 40% by volume, to prepare the biogas for testing. It is followed by the hydrogen, H2, enrichment within the range of 0 to 40% by volume and the temperature elevation of unburned gas till 440 K. Blowoff velocities were measured by lowering the jet velocity until a premixed flame could be stabilized at the nozzle exit, while laminar burning velocities were calculated by analyzing the shape of the directly captured premixed bunsen flames. The results showed that hydrogen had a positive effect on the blowoff velocity for all three fuel samples. Nonlinear growth of the blowoff velocity with hydrogen addition was associated to the dominance of methane-inhibited hydrogen combustion process. It was also observed that the increase in the initial temperature of the unburned mixture led to a linear increase of the blowoff velocity. Moreover, specific changes in flame structure such as flame height, standoff distance, and the existence of tip opening were attributed to the change in the blowoff velocity. The effect of CO2 content in the mixture was examined with regards to laminar burning velocity for all compositions. The outcome of the experiment showed that the biogas mixture with higher content of CO2 possessed lower values of laminar burning velocity over the wide range of equivalence ratios. A reduced GRI-Mech 3.0 was used to simulate the combustion of biogas/air mixtures with different compositions using ANSYS Fluent. The numerically simulated stable conical flames were compared with the experimental flames, in terms of flame structure, showing that the reduced GRI-Mech 3.0 was suitable for modeling the combustion of biogas/air mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号