首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Load-controlled fatigue tests are conducted for four positive R values on a low-alloy TRIP steel for two different heat treatments: an optimal treatment leading to a multiphase microstructure containing retained austenite, ferrite, bainite and martensite, and a non-optimal treatment leading to a ferritic–martensitic dual-phase microstructure. A significantly increased resistance to fatigue crack growth is found for the optimal case with respect to the non-optimal case. The amount of crack closure is found to be larger in case of the non-optimally treated (ferritic–martensitic) steel. Close to the crack tip, an increased hardness suggests martensite formation. An EBSD technique is used to quantify the volume of retained austenite ahead of the crack tip, within the plastic zone. It is found that martensite formation only occurs within the monotonic plastic zone during fatigue. By evaluation of the retained austenite fraction during straining in static tensile tests, the plastic strain levels within the plastic zone are assessed. Additionally, the effect of martensite formation on fracture toughness is estimated.  相似文献   

2.
Dynamic crack initiation toughness of 4340 steel at constant loading rates   总被引:2,自引:0,他引:2  
Determination of fracture toughness for metals under quasi-static loading conditions can follow well-established procedures and ASTM standards. The use of metallic materials in impact related applications requires the determination of dynamic crack initiation toughness for these materials. There are two main challenges in experiment design that must be overcome before valid dynamic data can be obtained. Dynamic equilibrium over the entire specimen needs to be approximately achieved to relate the crack tip loading state to the far-field loading conditions, and the loading rate at the crack tip should be maintained near constant during an experiment to delineate rate effects on the values of dynamic crack initiation toughness. A recently developed experimental technique for determining dynamic crack initiation toughness of brittle materials has been adapted to measure the dynamic crack initiation toughness of high-strength steel alloys. A Kolsky pressure bar is used to apply the dynamic loading. A pulse shaper is used to achieve constant loading rate at the crack tip and dynamic equilibrium across the specimen. A four-point bending configuration is used at the gage section of the setup. Results are presented which show a monotonically increasing rate dependence of crack initiation toughness for 4340 high-strength steel.  相似文献   

3.
Abstract

The present paper describes a steel with yield strength exceeding 1900 MPa and fracture toughness in the range of 40–50 MPa?m1/2, in its optimum heat treated condition. Its strength is similar to that of 18 Ni (300) grade of maraging steel with good fracture toughness. When tempered at 300°C, it shows tempered martensite along with a small amount of retained austenite phase. The steel shows nearly 25% reduction in weight over typical rolled homogeneous armour (RHA) steel against high velocity hard steel core projectiles. The processing, microstructure, mechanical and ballistic properties of the steel are demonstrated.  相似文献   

4.
Standard fracture toughness tests use fatigue pre-cracked specimens loaded monotonically from zero to failure. Scatter in toughness (cleavage) occurs because steel is metallurgically inhomogeneous, and because each specimen has its crack tip in a different local microstructure. A probability of fracture toughness distribution can be obtained by conducting multiple repeat tests on the same steel. This is often used to make probabilistic structural fracture predictions for combinations of crack length and applied load. However, it is likely the true structural situation involves gradual extension of a fatigue crack under a cyclic load. The question then arises as to how often the probability of fracture for the structure needs to be re-calculated. It could be argued that each fatigue load cycle moves the crack tip to a new position and gives a different instantaneous probability of fracture. But if this were the case, the predicted cumulative probability of fracture would quickly tend to unity. This paper describes cold temperature, wide plate fatigue tests designed to investigate this apparent contradiction. The steel is 15 mm thick, grade A, ship plate and the tests involve propagation of a fatigue crack from 300 mm to 650 mm length under a constant amplitude fatigue cycle of 10-100 MPa at −50 °C. The cold temperature fatigue tests do not show an obviously increased probability of fracture compared with the standard monotonic load tests. Nevertheless, in view of uncertainties surrounding the issue, a cumulative probability of fracture determined at 5 mm intervals through the steel is recommended for safe structural predictions.  相似文献   

5.
Fracture Mechanical Properties of Metastable Austenites The effect of a martensitic tranformation at the crack tip on fracture mechanical properties was investigated with FeNiAl-model alloys. Transformable austenite and martensite obtained by deep-cooling showed a completely different behaviour. The martensite has high yield stress, normal dependence of fracture toughness of specimen diameter, and a low threshold for the start of fatigue crack growth. Characteristic for the metastable austenite is a high work hardening ability (at a low yield stress) by stress-induced martensitic transformation in a zone at the crack tip, which is surrounded by untransformed austenite. This leads to a compressive internal stress, which impedes crack growth. A consequence is a high fracture toughness, which even increases with specimen thickness, and a very high threshold value for fatigue crack growth. Localized stress induced martensitic transformation associated with a positiv volume change can explain the anomalous fracture mechanical properties of the alloys in the metastable austenitic state.  相似文献   

6.
Although various approximations have been used to analytically predict the temperature rise at a dynamic crack tip and its relation to the crack tip velocity or the material properties, few experimental investigations of these effects exist. Here, the method of using a high speed infrared detector array to measure the temperature distribution at the tip of a dynamically propagating crack tip is outlined, and the results from a number of experiments on different metal alloys are reviewed. First the effect of crack tip velocity in 4340 steel is investigated, and it is seen that the maximum temperature increases with increasing velocity, the maximum plastic work rate density increases with velocity and the active plastic zone size decreases with increasing velocity. Also, it is observed that a significant change in the geometry of the temperature distribution occurs at higher velocities in steel due to the opening of the crack faces behind the crack tip. Next, the effect of thermal properties is examined, and it is seen that, due to adiabatic conditions at the crack tip, changes in thermal conductivity do not significantly affect the temperature field. Changes in density and heat capacity (as well as material dynamic fracture toughness) are more likely to produce significant differences in temperature than changes in thermal conductivity. Finally, the effect of heat upon the crack tip deformation is reviewed, and it is seen that the generation of heat at the crack tip in steel leads to the localization of deformation in the shear lip. The shear lip is actualy an adiabatic shear band formed at 45° to the surface of the specimen. In titanium, no conclusive evidence of shear localization in the shear lip is seen.  相似文献   

7.
对690 MPa级海工钢进行“淬火+两相区退火+回火”三步热处理,研究了回火温度对其组织和性能的影响、分析了力学性能变化与组织演变和残余奥氏体体积分数之间的关系。结果表明:回火后实验钢的显微组织为回火贝氏体/马氏体、临界铁素体和残余奥氏体的混合组织。随着回火温度的提高贝氏体/马氏体和临界铁素体逐渐分解成小尺寸晶粒,而残余奥氏体的体积分数逐渐增加;屈服强度由787 MPa降低到716 MPa,塑性和低温韧性明显增强,断后伸长率由20.30%增至29.24%,-40℃下的冲击功由77 J提升至150 J。残余奥氏体体积分数的增加引起裂纹扩展功增大,是低温韧性提高的主要原因。贝氏体/马氏体的分解和残余奥氏体的生成,引起组织细化、晶粒内低KAM值位错的比例逐渐提高和小角度晶界峰值的频率增大,使材料的塑性和韧性显著提高。  相似文献   

8.
Abstract— The mechanical behaviour of the duplex stainless steel AISI 329 has been investigated for ageing times up to 15,000 h at 475, 425, 375, 325 and 275°C. The study has concentrated on changes in the monotonic stress-strain behaviour and fracture toughness as a function of ageing temperature and time. It is shown that the tensile behaviour of the steel changes strongly due to ageing. A large increase in yield strength and reductions in ductility and fracture toughness are observed. The deformation hardening behaviour of the aged steel is explained by using a model based on a modified rule of mixtures. Finally it is shown that the higher toughness of aged duplex stainless steels, in comparison with ferritic stainless steels aged under the same ageing conditions, may be associated with the increase in crack growth resistance induced by ductile ligaments of austenite which bridge the crack faces.  相似文献   

9.
Martensitic microstructure in quenched and tempered 17CrNiMo6 steel with the prior austenite grain size ranging from 6 μm to 199 μm has been characterized by optical metallography (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The yield strength and the toughness of the steel with various prior austenite grain sizes were tested and correlated with microstructure characteristics. Results show that both the prior austenite grain size and the martensitic packet size in the 17CrNiMo6 steel follow a HalI-Petch relation with the yield strength. When the prior austenite grain size was refined from 199 μm to 6 μm , the yield strength increased by 235 MPa, while the Charpy U-notch impact energy at 77 K improved more than 8 times, indicating that microstructure refinement is more effective in improving the resistance to cleavage fracture than in increasing the strength. The fracture surfaces implied that the unit crack path for cleavage fracture is identified as being the packet.  相似文献   

10.
Abstract

An investigation has been undertaken to determine the magnitude of any reduction in properties that may occur in cast duplex stainless steels and weldments during long term exposure to reactor operating conditions. Test panels were fabricated in CF3 stainless steel using a manual metal arc (MMA) process and 19.9.L consumables. The mechanical properties of the parent material and weldments were measured following accelerated aging at 375 and 400°C for up to 20 000 h. Following aging at temperatures up to 400°C, reductions in both the Charpy impact and J integral–crack growth resistance R (J–R) fracture toughness of CF3 cast austenitic steel and 19.9.L austenitic weld metal were observed. For conditions equivalent to the proposed end of life for UK pressurised water reactors, the J–R fracture toughness at 300°C of both cast steel and MMA weld metal was reduced by ~30% for crack extensions of ≥1 mm. Hence, it is important that these reductions in weld metal toughness are taken into account during the development of safety cases and structural integrity assessments for any component in the primary loop that contains MMA stainless steel weldments.

MST/1198  相似文献   

11.
探索了奥氏体晶粒尺寸对珠光体等温转变组织特征以及对韧性性能的影响规律.研究表明,在相同等温转变温度下,珠光体片层间距无明显变化,随奥氏体晶粒尺寸的增加,先共析铁素体量减少而珠光体团尺寸增加.珠光体断裂韧性受控于裂纹前沿塑性影响区尺寸(1~2)δc,其中δc为临界裂纹张开位移,当原奥氏体晶粒大于(1~2)δc时,裂纹扩展阻力主要来自穿越珠光体片层α、θ相的颈缩、破断.当原奥氏体晶粒尺寸接近或小于(1~2)δc时,裂纹主要沿晶界、珠光体团界、α+θ片层界面扩展,通过扩展路径发生多次弯折消耗能量,随原奥氏体晶粒尺寸增加,准静态断裂韧度J变化幅度较小.而冲击韧性缺口前沿塑性影响区远大于原奥氏体晶粒,大角度晶界将促使裂纹的转折而提高扩展阻力,提高裂纹前沿塑性区大角度晶界密度有利于提高冲击功,冲击韧性A随晶粒尺寸的增加显著下降.  相似文献   

12.
Lamination occurs spontaneously in the transverse direction in many commercially available steel plates, if the transverse stresses are sufficiently high. Previous investigations have indicated that lamination is often accompanied by an improvement in the fracture toughness of the plate material. In the vicinity of the crack tip, the stress concentration is so large that the bond between adjacent layers will break before crack propagation sets in. If these layers are sufficiently thin, a state of plane stress is approached near the crack tip. In the present study, the influence of layer thickness and bond strength on the fracture toughness is investigated. It is shown that lamination does improve the toughness, if certain conditions in these variables are fulfilled. This offers a possibility to build up structures with high yield stress and high fracture toughness at the same time, since the permissible defect size to prevent unstable crack growth need not be uncomfortably small.  相似文献   

13.
为研究焊接对800 MPa级Ti、Nb复合微合金化析出强化超细晶粒钢组织性能的影响.运用Gleeble3500热模拟试验机,对实验钢进行单道次焊接热循环试验,并研究冷却速度、冷却时间t8/5对焊接热影响区粗晶区(CGHAZ)组织、性能的影响.结果表明:冷却速度5~15℃/s,CGHAZ的组织为贝氏体,冷却速度进一步增大,会出现马氏体.随着冷却时间t8/5的增加,原奥氏体晶粒尺寸逐渐增加,硬度值逐渐降低,冲击韧性先上升后下降.t8/5为20~120 s时,CGHAZ显微硬度(223~250.4 HV)均小于母材的显微硬度(270.6 HV),出现软化现象,t8/5为20 s时,冲击吸收功最高,为18.2 J,但仅有母材的25.3%.经历焊接热循环后,奥氏体晶粒粗化以及CGHAZ出现贝氏体组织是导致脆化的主要原因.  相似文献   

14.
The present study examines the causes of the cracks in welded 310 stainless steel that has been used in the Flare tip. According to the tests, including metallographic examination, macroscopic hardness test and scanning electron microscopic analysis, the reasons for the nucleation and growth of the cracks in the weld zone have been discussed. The results show that, because of the service temperature of Flare tip between 500 and 900 °C, and hydrocarbon gases such as methane, ethane, sour gas and carbon dioxide that are the combustion products, the component surface has been oxidized and carburized. Thus, the surface carburized oxide layer and also the subsurface damage can be fertile field for the nucleation of cracks. Likewise, the presence of sigma phases, austenite dendrites and interdendritic delta ferrite can cause a drop in toughness in the weld zone and provide fields for the crack growth in the weld zone.  相似文献   

15.
Conclusions It has been established that for a number of materials the condition of invariance of fracture toughness depends not only upon the type of material but also upon its structure.For a high-strength steel with a martensitic structure the kinetics of subcritical crack growth and also the parameter KIscc are sensitive to the original austenitic grain size. Heat treatment for coarse grains has a favorable influence on the corrosion crack resistance of such a steel. The creation in coarse-grained steel of serrated austenitic grain boundaries leads to an additional increase in resistance to corrosion crack growth.The generally accepted criterion of invariance of fracture toughness Eq. (1) is unsuitable as a condition guaranteeing no change in corrosion crack resistance parameters. The value of the coefficient Ac in Eq. (2), which characterizes the condition of obtaining the parameter KIscc independent of sample thickness, is determined by the structure of the material and for the systems considered is more than 500.Corrosion cracks in steel with a martensitic structure may have a complex morphology dependent upon the subcritical crack growth mechanism, the size of the austenitic grains, and the form of their boundaries. In contrast to fine-grained and overheated steel, for which intergranular subcritical crack growth is characteristic, in steel with serrated grain boundaries the subcritical crack growth mechanism is more complex. It was also observed that in the center layers of thick samples there is primarily transgranular failure replaced by intergranular at the transition to the surface layers.To determine the effective stress intensity factor at the tip of a corrosion crack with a complex trajectory, a method based on determining the pliability of a sample with a crack propagating in a curved trajectory was found to be effective.Translated from Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 17, No. 3, pp. 24–33, May–June, 1981.  相似文献   

16.
通过不同钢纤维体积分数及不同试件尺寸的预制缺口三点弯曲梁断裂试验,研究了普通乱向及定向钢纤维增强水泥基复合材料的抗起裂特性。利用试验测得的荷载-裂缝口张开位移曲线,分析了钢纤维对水泥基复合材料断裂性能的影响,并基于线性相关系数陡降法计算了起裂韧度。结果表明,定向钢纤维增强水泥基复合材料的起裂韧度明显高于普通乱向钢纤维增强水泥基复合材料;起裂韧度随钢纤维体积分数的增加而逐渐增大,当钢纤维体积分数达到0.9%左右时,定向钢纤维增强水泥基复合材料的起裂韧度值趋于稳定;在本试件高度范围内(40~100mm),起裂韧度随试件尺寸增加而逐渐增大,且定向钢纤维增强水泥基复合材料的增长趋势较为平缓。此外,从裂缝尖端夹杂改变其应力强度因子的角度解释了钢纤维的掺入及定向对起裂韧度的提高作用。  相似文献   

17.
The fracture toughness in an elastic-plastic material joined by a laser weld is analyzed for steady-state crack growth along the weld. The analysis is performed for laser welds in steel. Laser welding gives high mismatch between the yield stress within the weld and that in the base material, due to the fast thermic cycle that the material undergoes in welding. The material is described by J 2-flow theory, and the analysis is performed using a special numerical algorithm, in which the finite element mesh remains fixed relative to the tip of the growing crack, so that the material moves through the mesh. Fracture is modelled by using a cohesive zone criterion in front of the crack tip along the fracture zone. It is found that in general a thinner laser weld gives a higher interface toughness. Furthermore, it is shown that the preferred path of the crack is in the base material slightly outside the weld; a phenomenon also observed in experiments.  相似文献   

18.
In steel welds there is often a large variation in fracture toughness and mechanical properties between the weld metal, base material and the various heat affected zone (HAZ) microstructures. The stress field in front of a crack in a weldment can be noticeably affected by the strength mismatch between the weld metal, HAZ and the base material. The crack position relative to the various microstructures will clearly influence the strength mismatch effect. In this paper the influence of crack tip positioning on the fracture performance of strength mismatched steel welds has been studied both experimentally and by FEM analysis. For a mismatched weld with local brittle zones small changes in crack tip location can give considerable changes in the fracture performance of a CTOD specimen. A high degree of strength mismatch increases the effect of crack positioning. Weld metal overmatch increases the stress level in the heat affected zone due to material constraint and thereby reduces the cleavage fracture resistance of the weldment when the coarse grained HAZ (CGHAZ) controls the fracture. The detrimental effect of high overmatch is most pronounced for specimens with notch position at fusion line and a short distance into the brittle CGHAZ. The Weibull stress has been shown to be a suitable fracture parameter in the case where one microstructure clearly controls the cleavage fracture and the calculation of the Weibull stress therefore can be limited to this zone.  相似文献   

19.
This paper presents the theoretical formulation describing the role of fibers in enhancing the fracture toughness of quasi-brittle cement based materials. The formulation is based on the well known R-curve approach which correlates the increase of the apparent fracture toughness of a material with the existence of a pre-critical stable crack growth region.By assuming that the critical crack length in plain matrix is a function of an initial crack length a 0, a formulation for the R-curves has recently been derived and applied to predict the response of positive and negative geometry specimens of various sizes and materials. This approach is further applied to uniaxial tensile specimens containing various fiber types. Fiber reinforcement is modeled by means of applying closing pressure on crack surfaces resulting in closure of the crack faces and a decrease in the stress intensity factor at the tip of the propagating crack. Incorporation of these two factors in the energy balance equations for crack growth results in increases in both the slope and the plateau value of the R-curve representing matrix response. Enhancement in material response is shown to occur only if precritical crack growth exists, causing fibers to convert the stable cracking process into an increase in load carrying capacity of the material. Fracture response of fiber reinforced composites can be predicted up to the bend-over-point. The theoretical predictions are compared with the experimental results of cement-based composites containing unidirectional, continuous glass, steel or polypropylene fibers.  相似文献   

20.
Abstract

The strength and toughness of four high silicon content Al–Si–Mg–Cu alloys have been studied at room temperature (RT), 200°C and 300°C. The fatigue behaviour has also been investigated. The alloys were produced using two very different processing routes: lost foam and squeeze casting. In the tensile tests, the ductility was low for alloys produced via both routes irrespective of the testing temperature. The strength was similar at RT and 200°C, but at 300°C it fell abruptly. The toughness followed the same trend with testing temperature. Direct observation of fatigue cracks revealed that the brittle silicon and intermetallic particles broke ahead of the crack tip; the fatigue crack advanced by linking the main crack with cracks formed ahead of it. The T6 thermal treatment improved fatigue resistance in the squeeze cast material, especially at high D K values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号