首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the oxidative coupling of methane over the LaF3/La2O3 (5050) catalyst. The catalyst was found active even at 873 K. At 1023 K, the C2 yield was 12.7% at 26.0% CH4 conversion and 49.1% C2 selectivity. It was found to be stable and had a lifetime not less than 50 h at 1023 K. The catalyst was effective in C2H6 conversion to C2H4. XRD results indicated that the catalyst was mainly rhombohedral LaOF. It is suggested that the catalyst has ample stoichiometric defects and generates active oxygen sites suitable for methane dehydrogenation.  相似文献   

2.
Without use of any surfactant or oxidant, a series of Co3O4 catalysts have been prepared from cobalt nitrate aqueous solution via a very simple liquid-precipitation method with ammonium acid carbonate followed by calcination at various temperatures. The catalytic performance of the Co3O4 for CO oxidation has been studied with a continuous flowing laboratory microreactor system. The results show that the CO conversion of all the samples can reach 100% at ambient temperature. The catalyst calcined at 300 °C is able to maintain its activity for CO complete oxidation more than 500 min at 25 °C and about 240 min even at −78 °C. High reaction temperature results in a high catalytic stability, while the catalytic stability decreases with further increasing the reaction temperature. Characterizations with X-ray powder diffraction and transmission electron microscopy suggest that all the samples exist as a pure Co3O4 phase with the spinel structure, the samples are apt to aggregate and the specific surface area gradually decreases with increasing the calcination temperature, which directly leads to the decrease of catalytic stability. Furthermore, the amount of active oxygen species measured by CO titration experiments appears to be critical for catalytic performance.  相似文献   

3.
The presented results of methane oxidative coupling indicate that the lowering of the reaction temperature below 700°C, without any loss of its effectiveness, requires a much longer contact time than the times applied in a great majority of studies reported so far.  相似文献   

4.
The effects of Mn/Na2WO4, Li, and CaO loading on the monoclinic Sm2O3 catalyst were investigated for the oxidative coupling of methane using O2 or N2O as an oxidant. The catalysts were prepared by wet impregnation method and characterized by XRD, BET, CO2-TPD, and XPS analysis. Impregnation of Mn/Na2WO4 on monoclinic Sm2O3 resulted in the formation of Sm2?xMnxO3 phase, decreasing the catalytic performance. Li impregnation increased the C2 selectivity but decreased the catalytic activity. The SmLiO2 formation increased the catalytic activity and selectivity. High amounts of CaO impregnation increased the C2 selectivity of monoclinic Sm2O3 without a loss in catalytic activity. 6Li/m-Sm2O3 were found unstable due to the Li loss from the catalyst. The 15CaO/m-Sm2O3 was quite stable and showed 8.2% ethylene yield with N2O use, much higher than that was obtained with the well-known 2Mn/5Na2WO4/SiO2 and 4Li/MgO catalysts. N2O was more selective than O2 as an oxidant and enhanced ethylene formation.  相似文献   

5.
The interaction of methane at various temperatures with NO x species formed by room temperature adsorption of NO + O2 mixture on tungstated zirconia (18.6 wt.% WO3) and palladium(II)-promoted tungstated zirconia (0.1 wt.% Pd) has been investigated using in situ FT-IR spectroscopy. A mechanism for the reduction of NO over the Pd-promoted tungstated zirconia is proposed, which involves a step consisting of thermal decomposition of the nitromethane to adsorbed NO and formates through the intermediacy of cis-methyl nitrite. The HCOO formed acts as a reductant of the adsorbed NO producing nitrogen.  相似文献   

6.
In situ FTIR spectroscopy was used to characterize the oxygen adspecies and its reactivity with CH4 over LaOF and 15 mol% BaF2/LaOF catalysts at OCM temperature (750-800°C). It was found that gas-phase oxygen was activated on the surface of LaOF and 15 mol% BaF2/LaOF, which had been pretreated under vacuum at 750 or 800°C, forming O 2 - species at high temperature (750-800°C). At 750°C, the adsorbed O 2 - species can react with pure CH4 accompanied by formation of gas-phase C2H4 and CO2, and there is a good correlation between the rate of disappearance of surface O2and the rate of formation of gas-phase C2H4. The O 2 - species was also observed over the catalysts under working condition, and it reacted with CH4 in a manner that was consistent with its role in a catalytic cycle. These results suggest that O 2 - may be the active oxygen species for OCM reaction over these catalysts. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
From supplementary in situ Raman spectroscopic studies of active-oxygen species on non-reducible rare-earth-oxide-based catalysts in the oxidative coupling of methane (OCM) and structural adaptability considerations, further support has been obtained for our proposal that there may be an active and elusive precursor (of O2 and O2 2– adspecies), most probably O3 2– formed from reversible redox coupling of an O2 adspecies at an anionic vacancy with a neighboring O2– in the surface lattice. This active precursor may initiate H abstraction from CH4 and be itself converted to OH+O2 , or it may abstract an electron from the oxide lattice and be converted to O2 2–+O. The prospect of developing this type of OCM catalysts is discussed.  相似文献   

8.
Further evidence was delivered that certain impurities, which could be contained in MgO samples, might be responsible for observed variability in MgO basicity and catalytic performance in oxidative coupling of methane. The surface basicity/base strength distribution of a series of MgO samples containing or not containing Ca and Na impurities was determined by a temperature-programmed desorption of CO2. It was revealed that samples containing Ca and Na impurities have much more medium, strong and very strong basic sites. The surface basicity of MgO samples containing added alkali or alkaline earth compounds or water was characterized by a test reaction of transformation of 2-butanol. It was confirmed that the introduction of these compounds to a pure MgO enhanced both its basicity and activity in oxidative coupling of methane.  相似文献   

9.
In this work, oxidative coupling of methane over Mn/Na2WO4/SiO2 catalyst is studied in a two-zone fluidized-bed reactor (TZFBR) and its performance is compared with a fluidized-bed reactor (FBR). Diluted oxygen in argon was introduced into the bottom of the TZFBR through a quartz ferrite and methane was entered at higher positions along the fluidized bed. The catalyst circulated between the oxygen-rich and methane-rich zones in the TZFBR reactor. The effects of the main operating variables including bed temperature, the methane/oxygen ratio (Rmo), and the height at which methane was introduced into the reactor (Hm) were investigated. It is found that under some operating conditions the TZFBR gives a higher C2 selectivity than that obtained in the FBR reactor. Reaction of methane with lattice oxygen of the Mn/Na2WO4/SiO2 redox catalyst in the methane-rich zone may have led to the higher selectivity.  相似文献   

10.
In the oxidative coupling of methane by carbon dioxide, La2O3/ZnO catalysts were found to have high C2 selectivity and good stability. The coupling selectivity on La2O3/ZnO is about 90%, which is much higher than that on pure La2O3 or ZnO. The consumption ratio of carbon dioxide to methane is approximately one. X-ray diffraction analysis reveals that the structural forms of the oxides are unchanged during the reaction. The reaction mechanism for C2 formation is discussed.  相似文献   

11.
Gd3+-ESR spectroscopy can be used as a sensitive method for the study of lanthanide additives in catalysts. Here we present the results of a comparative study of Gd/SiO2-Al2O3 and Gd/HZSM-5. ESR gives evidence of rigid bonding of isolated Gd3+ ions into both amorphous silica-alumina and into HZSM-5. In addition, the zeolitic matrix stabilizes very small Gd3+-clusters (containing only a few ions) capable of interacting with water molecules. Excess Gd is present as non-dispersed, particulate oxide. Strong bonding of PO33- anionic ligands irreversibly changes the local environment and reactivity towards H2O of the Gd3+-clusters in HZSM-5. The Gd3+ ions do not block the cationic positions of HZSM-5 from further interaction with paramagnetic Cu2+ or Rh2+ cations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Pulse reaction method and in situ IR spectroscopy were used to characterize the active oxygen species for oxidative coupling of methane (OCM) over SrF2/Nd2O3 catalyst. It was found that OCM activity of the catalyst was very low in the absence of gas phase oxygen, which indicated that lattice oxygen species contributed little to the yield of C2 hydrocarbons. IR band of superoxide species (O2) was detected on the O2-preadsorbed SrF2/Nd2O3. The substitution of 18O2 isotope for 16O2 caused the IR band of O2 at 1128 cm−1 to shift to lower wavenumbers (1094 and 1062 cm−1), consistent with the assignment of the spectra to the O2 species. A good correlation between the rate of disappearance of surface O2 and the rate of formation of gas phase C2H4 was observed upon interaction of CH4 with O2-preadsorbed catalyst at 700 °C. The O2 species was also observed on the catalyst under working condition. These results suggest that O2 species is the active oxygen species for OCM reaction on SrF2/Nd2O3 catalyst.  相似文献   

13.
20%SrO-20%La2O3/CaO catalyst (SLC-2), prepared by impregnation, has shown 18% CH4 conversion and 80% C2-selectivity for the oxidative coupling of methane (OCM) at 1073–1103 K with CH4O2 molar ratio=91 and total flow rate of 100 ml/min. Addition of SrO onto La2O3/CaO (LC) catalyst strengthens the surface basicity and leads to an increase in CH4 conversion and C2-selectivity. Meanwhile, the reaction temperature required to obtain the highest C2-yield increases with increasing SrO content. The formation of carbonate on the catalyst surface is the main reason for the deactivation of LC and SLC catalysts. If the amount of CO2 added into the feed is appropriate and the reaction temperature is high enough, there is no deactivation at all. In such case, the added CO2 will suppress the formation of CO2 produced via the OCM reaction, therefore, improves the C2-selectivity. The FT-IR spectra of CO2 adspecies recorded at different temperatures show that CO2 interacts easily with the catalyst surface to form different carbonate adspecies. Unidentate carbonate is the main CO2 adspecies formed on the catalyst surface. On the LC catalyst surface, the unidentate carbonate was first formed on Ca2+ cations at room temperature. If the temperature is higher than 473 K, it will form on La3+ cations. On the SLC catalyst surface, if the temperature is lower than 573 K, only the unidentate carbonate formed on Ca2+ cations could be observed. When the temperature is higher than 673 K, it will then form on Sr2+ cations. This suggests that the unidentate carbonate can migrate on the LC and SLC catalyst surface on one hand, and on the other hand, that the surface composition of SLC catalysts is dynamic in nature. On the basis of both the decomposition temperatures of the carbonate species, and the temperature dependence of the value which is the difference of symmetric and asymmetric stretching frequencies of surface carbonates, the in situ FT-IR technique offered two approaches to measure the surface basicity of the SLC catalyst. The results thus obtained are in good agreement with that of CO2-TPD. The role of the surface basicity of the SLC catalyst is also discussed.  相似文献   

14.
The effect of rare-earth ions (La, Pr, Nd and Gd) in AMnO3+x and AFeO3+x perovskites on the thermal behavior and on the catalytic activity for the deep oxidation of methane has been studied. AMnO3+x perovskites showed after preparation an oxidative non-stoichiometry. Oxygen desorption analysis revealed for the four manganites different desorption steps occurring between 930 and 1370 K. Stoichiometry was reached after the first desorption step. Heating the samples at temperatures above 1300 K resulted in phase segregation to the simple oxides. AFeO3+x perovskites were more stable towards thermal decomposition than the Mn-perovskites, showing no oxygen evolution up to 1400 K. The reducibility of these perovskites in hydrogen correlated inversely with the relative effective ionic radii of the trivalent rare-earth cations. Comparative catalytic studies were carried out in a fixed-bed microreactor at atmospheric pressure in the temperature range 600–1200 K. The activities at 770 K, expressed as reaction rates referred to the BET surface area, varied between 1.4 × 10–7 and 2.9 × 10–7 mol s–1 m–7 for the AMnO3+x, and between 1.1 × 10–7 and 1.6 × 10–7 mols–1m–2for the AFeO3+x perovskites.  相似文献   

15.
H.X. Dai  H. He  W. Li  Z.Z. Gao  C.T. Au 《Catalysis Letters》2001,73(2-4):149-156
Perovskite-type oxide ACo0.8Bi0.2O2.87 (A=La0.8Ba0.2) has been investigated as a catalyst for the oxidation of carbon monoxide. X-ray diffraction results revealed that the catalyst is single-phase and cubic in structure. The results of chemical analysis indicated that in ACo0.8Bi0.2O2.87, bismuth is pentavalent whereas cobalt is trivalent as well as bivalent; in La0.8Ba0.2CoO2.94, cobalt ions exist as Co3+ and Co4+. The substitution of Bi for Co enhanced the catalytic activity of the perovskite-type oxide significantly. Over the Bi-incorporated catalyst, at equal space velocities and with the rise in CO/O2 molar ratio, the temperature for 100% CO conversion shifted to a higher range; at a typical space velocity of 30000 h–1 and a CO/O2 molar ratio of 0.67/1.00, 100% CO conversion was observed at 250°C. Over ACo0.8Bi0.2O2.87, at equal CO/O2 molar ratio, the temperature for 100% CO conversion decreased with a drop in space velocity; the lowest being 190°C at a space velocity of 5000 h–1. The result of O2-TPD study illustrated that the presence of Bi ions caused the lattice oxygen of La0.8Ba0.2CoO3– to desorb at a lower temperature. The results of TPR, 18O/16O isotopic exchange, and CO-pulsing investigations demonstrated that the lattice oxygen of the Bi-doped catalyst is highly mobile.  相似文献   

16.
Electrochemical performance of a divided cell with electrogeneration of Ag2+ from Ag+ in 6 M HNO3 anolyte has been studied with 6 M HNO3 or 3 M H2SO4 as the catholyte. This work arose because in mediated electrochemical oxidation (MEO) processes with Ag(II)/Ag(I) redox mediator, HNO3 is generally used as catholyte, which, however, produces NO x gases in the cathode compartment. The performance of the cell with 6 M HNO3 or 3 M H2SO4 as the catholyte has been compared in terms of (i) the acid concentration in the cathode compartment, (ii) the Ag+ to Ag2+ conversion efficiency in the anolyte, (iii) the migration of Ag+ from anolyte to catholyte across the membrane separator, and (iv) the cell voltage. Studies with various concentrations of H2SO4 catholyte have been carried-out, and the cathode surfaces have been analyzed by SEM and EDXA; similarly, the precipitated material collected in the cathode compartment at higher H2SO4 concentrations has been analyzed by XRD to understand the underlying processes. The various beneficial effects in using H2SO4 as catholyte have been presented. A simple cathode surface renewal method relatively free from Ag deposit has been suggested.  相似文献   

17.
S?awomir Ku? 《Fuel》2003,82(11):1331-1338
The catalytic performance in oxidative coupling of methane (OCM) of unmodified pure La2O3, Nd2O3, ZrO2 and Nb2O5 has been investigated under various conditions. The results confirmed that the activity of La2O3 and Nd2O3 was always much higher than that of the remaining two. The surface basicity/base strength distribution of pure La2O3, Nd2O3, ZrO2 and Nb2O5 was measured using a test reaction of transformation of 2-butanol and a temperature-programmed desorption of CO2. Both methods showed that La2O3 and Nd2O3 had high basicity and contained medium and strong basic sites (lanthanum oxide more and neodymium oxide somewhat less). ZrO2 had only negligible amount of weak basic sites and Nb2O5 was rather acidic. The confrontation of the basicity and catalytic performance indicated that in the case of investigated oxides, the basicity (especially strong basic sites) could be a decisive factor in determination of the catalytic activity in OCM. Only in the case of ZrO2 it was observed a moderate catalytic performance in spite of negligible basicity. The influence of a gas atmosphere used in the calcination of oxides (flowing oxygen, helium and nitrogen) on their basicity and catalytic activity in OCM had been also investigated. Contrary to earlier observations with MgO, no effect of calcination atmosphere on the catalytic performance of investigated oxides in OCM and on their basicity was observed.  相似文献   

18.
For Na2O/CaO catalysts of different sodium content the adsorption of oxygen and their electrical properties were studied by transient experiments and measurements of contact potential differences (CPD) as well as electrical conductivity. CPD results show a change of the mechanism of oxygen activation with increasing sodium concentration due to changing the type of ionic conductivity from cationic to anionic. Anion vacancies are formed by incorporation of sodium into the CaO lattice. As CPDs show, the cation conductivity promotes an accumulation of oxygen species on the catalyst surface resulting in a decrease of C2 product selectivity for the catalyzed oxidative coupling of methane. The anion conductivity favors a dissociation of molecular adsorbed oxygen and a subsequent incorporation into the oxide lattice, hereby, decreasing its concentration on the catalyst surface which favors in term selective formation of ethane and ethylene. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Au/Co3O4 catalysts with different morphologies (nanorods, nanopolyhedra and nanocubes) were successfully synthesized and evaluated for ethylene complete oxidation. We found that support morphology has a significant effect on catalytic activity, which is related to the exposed planes of different morphological Co3O4. HRTEM revealed the Co3O4-nanorods predominantly exposes {110} planes, while the dominant exposed planes of Co3O4-nanopolyhedra and -nanocubes are {011} and {001} planes, respectively. Compared with {011} and {001} planes, {110} planes exhibit the maximum amount of oxygen vacancies, which play a major role in ethylene oxidation. Therefore, Au/Co3O4-nanorods exhibits extraordinary catalytic activity, yielding 93.7% ethylene conversion at 0 °C.  相似文献   

20.
Valence and coordination states of molybdenum ions formed upon thermal treatment of Mo/H–ZSM-5 catalyst for methane dehydroaromatization in Ar and Ar/CH4 media at 573–973 K have been studied by ESR and UV–VIS spectroscopy. For comparison, the characteristic ESR spectra of thermolyzed bulk ammonium heptamolybdate have been studied and analyzed in detail. The nature of earlier observed Mo5+ ions has been verified, and new paramagnetic states of molybdenum in Mo/H–ZSM-5 catalysts have been detected: Mo3+ ions, and Mo5+ ions in tetrahedral coordination with delocalization of unpaired electron to Al and H or Al and N atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号