首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
为了改善碳化硼的强韧性和加工性能,通过在B4C基体中,分别添加体积分数为20%、30%、40%的ZrB2-SiC添加剂,在烧结温度1900℃,烧结压力30MPa,烧结时间60min条件下,制备了相对密度94.4%~96.2%的B4C-ZrB2-SiC陶瓷基复合材料,并对其进行了力学性能测试和微观组织分析。研究表明,与纯B4C陶瓷相比,不同体积分数的ZrB2-SiC加入,使碳化硼陶瓷基复合材料的断裂韧性达到(3.9±0.3)MPa·m1/2,抗弯强度在(232.8±10.2)MPa到(336.8±6.1)MPa之间,维氏硬度在(26.9±0.3)GPa到(35.0±0.2)GPa之间。同时,ZrB2-SiC添加剂的加入,极大地改善了B4C陶瓷基复合材料的加工性能,使复杂形状的加工成为可能,并且改善了加工质量,降低了成本。  相似文献   

2.
在烧结温度和压力为1800 ℃和30 MPa条件下热压烧结制备ZrB2-20%(体积分数, 下同)SiCw陶瓷复合材料,并研究两种不同SiC晶须对材料的显微组织与力学性能的影响.结果表明,复合材料的弯曲强度和断裂韧性与SiC晶须的长径比有关,长径比越大材料的性能越好,弯曲强度和断裂韧性最高为651 MPa和5.97 MPa·m1/2;与单相的ZrB2材料及SiC颗粒增强ZrB2复合材料相比,断裂韧性有显著提高;其主要增韧机制为裂纹偏转、晶须桥连和拔出.  相似文献   

3.
张天助  陈招科  熊翔 《稀有金属快报》2013,(11):659-664,675
为提高C/C复合材料的抗烧蚀性能,采用两步刷涂一烧结法制备了ZrB2-SiC基陶瓷涂层。首先利用反应烧结制备ZrB2-SiC—ZrC过渡层,并在此基础上制备了ZrB2-20%SiC-5%Si3N4、ZrB2.15%SIC-20%MoSi2、ZrB2.15%SiC-20%TaC3种外涂层。利用XRD和扫描电镜研究了涂层的相组成和显微形貌,并采用氧乙炔焰烧蚀仪测试了涂层在2500℃、60S的抗烧蚀性能,探讨了涂层的高温烧蚀机理。结果表明:利用反应烧结制备的过渡层与基体结合紧密,且与外涂层无明显分层现象,起到了良好的过渡作用;由于Si,N4及MoSi2起到了烧结助剂作用,使ZrB2—20%SiC-5%Si,N4、ZrB2.15%SiC.20%MoSi2外涂层结构较为致密;ZrB2—20%SiC-5%si3N4、ZrB2—15%SiC~20%MoSi2涂层表现出了较好的抗烧蚀性能,其中ZrB2-20%SiC-5%Si3N4涂层线烧蚀率及质量烧蚀率分别为0.075mm/s、0.0081/s,ZrB2—15%SIC-20%MoSi2涂层线烧蚀率及质量烧蚀率分别为0.018mm/s、0.0064g/s,而ZrB2-15%SIC-20%TaC涂层由于结构较为松散,未能起到有效的氧化防护,导致涂层被烧穿。  相似文献   

4.
利用热压烧结法,在2400℃烧结温度下,制备了NbMo固溶体(此后记作(Nb,Mo)ss)基陶瓷颗粒增强复合材料。其中,ZrB2陶瓷增强相的体积分数分别为15%,30%,45%和60%。本文研究了在800℃,1000℃和1200℃下,ZrB2含量对复合材料抗氧化性和氧化产物演变的作用。试验结果表明,氧化温度和ZrB2含量均对复合材料的氧化行为有影响。从氧化速率常数角度讲,ZrB2-(Nb,Mo)ss复合材料的抗氧化性随ZrB2含量的增加而提高,随氧化温度的提高而降低。800℃-1000℃的氧化产物中含有膜状Nb2Zr6O17相,能作为屏障阻止氧气向基体扩散,因此在800℃-1000℃时,复合材料氧化速率较低。然而,在1200℃氧化时未发现Nb2Zr6O17相,MoO3的剧烈挥发和ZrO2的体积效应破坏了Nb2Zr6O17保护层,导致了氧化层严重剥落,材料的抗氧化性极差。综上,本文结合观察到的氧化产物形貌,详细阐述了不同ZrB2含量的复合材料在不同温度下的抗氧化机制。  相似文献   

5.
ZrB2陶瓷的自蔓延高温合成和热压烧结   总被引:1,自引:1,他引:1  
采用自蔓延高温合成(SHS)技术研究了Zr-B2O3-Mg体系反应原料的不同粒度和掺量对反应产物的影响规律,并采用热压烧结方法烧结得到ZrB2陶瓷.先用XRD对材料的相组成进行了分析;再通过化学分析测定精确的相组成;由SHS研究装置测量燃烧温度;由SEM观察材料的显微结构;用排水法测定烧结体的密度.研究结果表明:Zr粉粒径为50μm和Mg过量15%(摩尔分数)时的反应体系是最理想的SHS反应体系,SHS产物粒径为2~5 μm.酸洗产物粒径为0.5~2 μm;其中含有ZrB2(94.59%,质量分数,下同),ZrO2(3.87%),H3BO3(1.54%).烧结体是单相的ZrB2陶瓷;粒径为2~10μm;相对密度为95.4%.  相似文献   

6.
本文采用纳米ZrB2粉体系统研究了ZrB2基超高温陶瓷的放电等离子烧结行为。由于采用纳米粉体,单相ZrB2在1550℃的低温下即发生快速的致密化烧结。ZrB2-SiC陶瓷经1800℃放电等离子烧结后可实现完全致密化,并且材料的弯曲强度高达1078±162 MPa。在1700℃采用放电等离子烧结成功制备了ZrB2-SiC-Cf复合材料,材料断口表现出明显的纤维拔出现象,导致其具有高的断裂韧性值(6.04 MPa·m1/2)和非脆性断裂的模式。同时,ZrB2-SiC-Cf复合材料具有很高的临界热冲击温差(627℃),表明该材料具有优异的抗热冲击性能。  相似文献   

7.
ZrB2陶瓷的制备和烧结   总被引:7,自引:0,他引:7  
采用自蔓延高温合成(Self-propagating high-temperature synthesis,SHS)技术和热压烧结(Hot pressing,HP)方法分别研究了Zr-B2O3-Mg和ZrO2-B4C-C体系反应原料的粒度和配比以及烧结温度对产物的影响规律,并烧结得到ZrB2陶瓷.采用X射线衍射和化学分析方法分析了材料的相组成,利用SEM和TEM观察了显微结构;并用阿基米德排水法测定了相对密度.结果表明:在Zr-B2O3-Mg体系中,50μm Zr粉和Mg过量15%(摩尔分数)的体系是最理想的SHS反应体系;SHS产物粒径、酸洗产物粒径和烧结体粒径分别为2~5μm、0.5~2.0 μm和2~10μm;酸洗产物组成为94.59%ZrB2、3.87%ZrO2和1.54%H3BO3(质量分数);烧结体为单相ZrB2陶瓷,相对密度为95.4%.在ZrO2-B4C-C体系中,B4C过量15%和C过量10%(摩尔分数)的体系是最理想的反应体系;烧结体相对密度为94%;烧结体组成为95.44%ZrB2、3.87%ZrO2、0.32?C和0.37%C(质量分数).  相似文献   

8.
基于非均匀成核法制备ZrB2/B4C陶瓷复合材料   总被引:1,自引:0,他引:1  
以ZrOCl2·8H2O和B4C为主要原料,采用非均匀成核法、原位生成和无压烧结技术制备出ZrB2/B4C陶瓷复合材料.重点探讨了烧结温度对ZrB2/B4C陶瓷复合材料组织结构和性能的影响.结果表明,随着烧结温度的升高,ZrB2/B4C陶瓷复合材料的密度和硬度均为先升高后降低.材料的最佳烧结温度为2060 ℃,烧结时间为0.5 h.在最佳烧结工艺条件下,ZrB2/B4C陶瓷复合材料的相对密度、硬度和断裂韧性分别为96% T.D,42.3 GPa和4.7 MPa·m1/2.  相似文献   

9.
放电等离子烧结ZrB_2-YAG-Al_2O_3复相陶瓷的氧化性能   总被引:2,自引:0,他引:2  
通过共沉淀法获得包覆式Al2O3-Y2O3/ZrB2复合粉体并对其进行放电等离子烧结来提高ZrB2陶瓷的烧结致密度和高温抗氧化能力。研究表明:通过引入YAG-Al2O3制备的陶瓷和纯ZrB2陶瓷相比,在相同氧化条件下得到的氧化层厚度有所变薄,说明通过引入YAG-Al2O3可以改善ZrB2陶瓷的抗氧化性能。在相同氧化条件下,引入Al2O3越多的陶瓷氧化层厚度越小。  相似文献   

10.
利用喷雾干燥与真空烧结技术制备团聚型ZrB2-MoSi2复合粉末,以这些粉末为原料,通过低压等离子喷涂法制备了ZrB2-30 wt.%MoSi2复合涂层(SZM涂层)。作为对比,利用机械混合粉末制备了ZrB2-30 wt.%MoSi2复合涂层(MZM涂层)。借助SEM、XRD和EDS等对涂层的组织结构进行研究,并利用霍尔流速计和松装密度计对团聚粉末的流动性和松装密度进行了测试。此外,对涂层的显微硬度、孔隙率和氧化特性均进行了研究。结果表明:喷雾干燥粉末在1200℃真空烧结1h后,它的流动性和松装密度分别达到25.8 s/50g 和1.12 g/cm3。与MZM涂层相比,SZM涂层中的MoSi2分布更加均匀,而且结构更加致密。所以团聚粉末制备的涂层在1500℃的抗氧化性能更好。  相似文献   

11.
以ZrO2(或ZrOCl2·8H2O)、B2O3(或H3BO3)和工业Al粉为原料,在氩(氮)气气氛中合成了ZrB2-Al2O3复合粉体,较佳的摩尔配比为ZrO2(ZrOCl2·8H2O):H3BO3:Al=3:6:20。自蔓延高温合成法、微波法以及高能球磨法合成的复合粉体晶粒细小,具有良好的成型性和烧结性。ZrB2-Al2O3复合粉体可用来制备高性能陶瓷以及作为含碳耐火材料的添加剂来提高材料的抗氧化性和抗侵蚀性,此复合粉体在磨料磨具工业也有广阔的应用前景。  相似文献   

12.
用普通反应热压方法(RHP)和反应放电等离子体方法(R-SPS)原位反应制备了ZrB2-SiC,ZrB2-SiC—ZrC,ZrB2-SiC-ZrN,以及ZrB2-SiC-AIN4种复合材料。从密度,物相以及显微结构等方面比较了两种烧结方式之间的差别,对于升温速度较慢的普通热压方法,反应分步进行,显微结构不均匀;对于升温速度快的放电等离子体烧结,原料间的自蔓延反应被点着,反应速度快,显微结构均匀。同时以红外灯的热量为点火源,引发了Zr,Si及B4C间在空气气氛下的自蔓延反应,制备了较纯及粒径约为1μm的活性粉体。  相似文献   

13.
Y2O3掺杂ZrB2-SiC基超高温陶瓷的抗烧蚀性能   总被引:1,自引:0,他引:1  
为改善ZrB2-SiC基超高温陶瓷的抗氧化和抗烧蚀性能,在制备过程中加入Y2O3。用氧乙炔火焰法来考察ZrB2-SiC-Y2O3的抗氧化和抗烧蚀性能。采用SEM和XRD分析烧蚀前后形貌及物相。材料在加热和冷却过程中没有出现开裂现象,说明其具有良好的抗热冲击性能。微观组织分析表明,氧化层主要由4层组成,且氧化层与基体层没有明显的剥离。结果表明:Y2O3的添加可以将氧化产物中的高温稳定相稳定到室温,减少由于相变发生的体积膨胀,改善氧化层与基体层的粘结性能。  相似文献   

14.
通过热压烧结制备SiC(W)-ZrO2-MoSi2复相陶瓷,利用X射线衍射仪、图像分析仪、透射电镜对复相陶瓷试样组织结构进行了研究,探讨了SiC(W)-ZrO2协同作用对MoSi2陶瓷性能的影响.结果表明:纳米ZrO2颗粒的加入对材料的细化作用较SiC晶须明显,复相协同作用细化效果更好.SiC(W)-ZrO2协同作用的综合机制有利于提高复相陶瓷的抗弯强度和断裂韧性,ZrO2量的增加对提高复相陶瓷断裂韧性的作用更明显;ZrO2粒子钉扎位错,导致可动位错绕过,强化材料基体.弥散分布的SiC晶须阻碍位错运动,使位错缠结、交割,阻碍晶界迁移;粒子周围出现孪晶以及SiC晶须引起的层错,阻碍其晶粒长大.  相似文献   

15.
利用粉末冶金方法制备了Al2Ti3V2ZrB/2024Al复合材料,研究了球磨工艺和烧结温度对复合材料微观组织和硬度的影响。结果表明,球磨时过高的球磨速度或过长的球磨时间均会造成Al2Ti3V2ZrB颗粒的团聚,影响复合材料的组织均匀性。在球磨速度为150r/min下球磨5h,Al2Ti3V2ZrB颗粒在2024Al基体中的分布最均匀,复合材料的硬度最高。当烧结温度低于510℃时,Al2Ti3V2ZrB颗粒在2024Al基体中分布比较均匀,复合材料密度和硬度随烧结温度升高逐渐增加;超过510℃后Al2Ti3V2ZrB颗粒开始团聚,复合材料密度和硬度下降,在510℃制备的复合材料具有最高的硬度。  相似文献   

16.
Room—temperature mechanical properties of WSi2/MoSi2 composites   总被引:3,自引:0,他引:3  
Five Kinds of WSi2/MoSi2 composites were successfully prepared by mechanical alloying,IP and high temperature sintering techniques.And their hardness and fracture toughness were measured by the Vickers indentation fracture mode through an Hv-10A type sclerometer.The microstructure and morphology were investigated by a JSM-5600IV scanning electron microscope.Results show that the addition of 50% WSi2(in mole fraction)has remarkable hardening and toughening effects on the MoSi2 matrix.whose hardness value and fracture toughness value are increased about 60% and 86%,respectively.For WSi2/MoSi2 comosite,the hardening mechanisms are fine-grain and the second phase particles strengthening,and the toughening mechanisms include fine-grain,grain drawing,crack deflection,microbridge and bowing toughening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号