首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
A solution is given for the elastodynamic problem of a crack perpendicular to the graded interfacial zone in bonded materials under the action of antiplane shear impact. The interfacial zone is modeled as a nonhomogeneous interlayer with the power-law variations of its shear modulus and mass density between the two dissimilar, homogeneous half-planes. Laplace and Fourier integral transforms are employed to reduce the transient problem to the solution of a Cauchy-type singular integral equation in the Laplace transform domain. Via the numerical inversion of the Laplace transforms, the values of the dynamic stress intensity factors are obtained as a function of time. As a result, the influences of material and geometric parameters of the bonded media on the overshoot characteristics of the dynamic stress intensities are discussed. A comparison is also made with the corresponding elastostatic solutions, addressing the inertia effect on the dynamic load transfer to the crack tips for various combinations of the physical properties.  相似文献   

2.
A problem of a circular elastic inhomogeneity interacting with a crack under uniform loadings (mechanical tension and heat flux at infinity) is solved. The singular integral equations for edge and temperature dislocation distribution functions are constructed and solved numerically, to obtain the stress intensity factors. The effects of the material property ratio on the stress intensity factor (SIF) are investigated. The computed SIFs are used to predict the kink angle of the crack when the crack grows.  相似文献   

3.
The dynamic response of an eccentric Griffith crack in functionally graded piezoelectric ceramic strip under anti-plane shear impact loading is analysed using integral transform method. Laplace transform and Fourier transform are used to reduce the problem to two pairs of dual integral equations, which are then expressed to Fredholm integral equations of the second kind. We assume that the properties of the functionally graded piezoelectric material vary continuously along the thickness. The impermeable crack boundary condition is adopted. Numerical values on the dynamic stress intensity factors are presented for the functionally graded piezoelectric material to show the dependence of the gradient of material properties and electric loadings.  相似文献   

4.
In this paper, we examine the singular stresses and electric fields in a functionally graded piezoelectric ceramic strip containing an eccentric crack off the center line under anti-plane shear loading with the theory of linear piezoelectricity. It is assumed that the properties of the functionally graded piezoelectric ceramic strip vary continuously along the thickness. Fourier transforms are used to reduce the problem to the solution of two pairs of dual integral equations, which are then expressed to a Fredholm integral equation of the second kind. Numerical values on the stress intensity factor and the energy release rate are obtained.  相似文献   

5.
多轴载荷对疲劳裂纹的影响   总被引:1,自引:0,他引:1  
针对振动疲劳试验的载荷加载方式问题,比较分析了传统振动试验台的单轴载荷依次加载和目前的多轴振动台的多轴载荷同时加载对疲劳裂纹应力强度因子的影响,揭示了多轴振动载荷同时加载对疲劳失效具有更高的激发效能。  相似文献   

6.
In order to investigate the corrosion fatigue characteristics in the weld of multi-pass welded A106 Gr B steel pipe, corrosion fatigue tests were performed under the various stress ratios and 3.5 wt% NaCl solution at room temperature. The corrosion fatigue characteristic curves were represented using crack closure concept. The obtained results are as follows ; when the load frequency is 1.0 Hz, the crack opening point is transited in the region of Kmax=20-32 MPa-msu1/2. In the low stress intensity factor range, the crack opening point is higher than that in air. However, in the high stress intensity factor range, it is lower than that in air. In the cases of 0.1 Hz and 0.01 Hz, the crack opening point gradually decreases to K(min) with Kmax increase.  相似文献   

7.
A conducting crack in an electrostrictive ceramic under combined electric and mechanical loading is investigated. Analysis based on linear dielectric model predicts that the surfaces of the crack are not open completely but they are contact near the crack tip. The complete solution for the crack with a contact zone in a linear electrostrictive ceramic under combined electric and mechanical loading is obtained by using the complex variable formula. The asymptotic problems for a semi-infinite crack with a partial opening zone as well as for a fully open semi-infinite crack in a nonlinear electrostrictive ceramic are analyzed in order to investigate the effect of the electrical nonlinearity on the stress intensity factor under small scale nonlinear conditions. Particular attention is devoted to a finite crack in the nonlinear electrostrictive ceramic subjected to combined electric and mechanical loading. The stress intensity factor for the finite crack under small scale nonlinear conditions is obtained from the asymptotic analysis.  相似文献   

8.
This article presents a numerical study of magnetohydrodynamic (MHD) infinitely wide plane inclined slider bearings including both fluid inertia and non-Newtonian couple stress effects. Fluid inertia forces are considered in the film fluid using a simplified form of the Navier-Stokes equations. The non-Newtonian couple stress behavior of the lubricant is described based on the microcontinuum Stokes theory. The governing equations are discretized by finite differences using a boundary layer–type equations resolution. The resulting algebraic equations are solved using the Gauss-Seidel method. It is found that the couple effects of fluid inertia forces, MHD, and non-Newtonian couple stresses provide a significant improvement in the slider bearing load capacity compared to the case of the noninertia Newtonian nonconducting lubricant. The use of conducting lubricant diminishes the negative effect of inertia forces on the friction coefficient.  相似文献   

9.
The problem of a radial crack in cross-ply laminates under uniaxial tension is investigated in this paper. The normalized stress intensity factors are obtained by the modified mapping collocation method which is based on analytic complex function theory of complex variables. The present results for an isotropic infinite plate show good agreement with existing solutions. In the range of small crack length, the stress intensity factor for a radial crack in cross-ply laminates under uniaxial tension becomes larger as the percentage of 0° plies increases. However in the range of large crack length, it is insensitive to the percentage of 0° plies.  相似文献   

10.
赵明皞  韩海涛 《机械强度》2003,25(4):445-449
在不可导通、可导通和半可导通等三种电边界条件下,系统研究并给出三维无限横观各向同性压电介质中平行于各向同性面的、任意形状的平片裂纹在任意载荷作用下的不连续位移和不连续电势边界积分方程方法。无论平片裂纹的形状如何,结果都表明:对不可导通裂纹,应力强度因子只与机械载荷有关,电位移强度因子只与电载荷有关;而可导通裂纹的应力强度因子和电位移强度因子只与机械载荷有关,电位移强度因子由机械载荷通过压电效应产生。半可导通裂纹所对应的边界积分方程组为非线性方程组,文中给出一种迭代解法。在均布的机械载荷和电载荷作用下。裂纹腔内的电位移为一常数,只与外加载荷有关,而与裂纹形状无关。  相似文献   

11.
The effects of cavities on maximum equivalent stresses of buried pipelines are investigated in terms of two factors such as size and location of the underground cavities by using a finite element code. It has been found that the cavities affect maximum equivalent stresses of buried pipeline significantly in case that the diameters of cavities are larger than that of the pipeline. The variation of the stress intensity factors for a crack existing on the buried pipeline nearby cavities is also studied. The mode II stress intensity factor, KII, for a tilt crack located at the top portion of a buried pipeline is found to be influenced significantly regardless of the location of the underground cavities.  相似文献   

12.
A cracked plate with a patch bonded on one side was treated with a crack-bridging model using weight function : assuming continuous distribution of springs acting between th crack surfaces, the stress intensity factor of the patched crack was numerically obtained. Especially in the case of a patched crack subjected to residual non-uniform stress, the stress intensity factor was easily with the corresponding approximate weight function. This paper presented the stress intensity factors for a crack partially patched within a finite plate or a patched crack initiated from a notch.  相似文献   

13.
A study on a creep-fatigue crack growth behavior has been carried out for a cylindrical structure with weldments by using a structural test and an evaluation according to the assessment procedures. The creep-fatigue crack growth behavior following the creep-fatigue crack initiation has been assessed by using the French A16 procedure and the conservatism for the present structural test has been examined. The structural specimen is a welded cylindrical shell made of 316 L stainless steel (SS) for one half of the cylinder and 304 SS for the other half. In the creep-fatigue test, the hold time under a tensile load which produces the primary nominal stress of 45 MPa was one hour at 600°C and creep-fatigue loads of 600 cycles were applied. The evaluation results for the creep-fatigue crack propagation were compared with those of the observed images from the structural test. The assessment results for the creep-fatigue crack behavior according to the French A16 procedure showed that the A16 is overly conservative for the creep-fatigue crack propagation in the present case with a short hold time of one hour.  相似文献   

14.
The dynamic propagation of an eccentric Griffith crack in a functionally graded piezoelectric ceramic strip under anti-plane shear is analyzed using the integral transform method. A constant velocity Yoffe-type moving crack is considered. Fourier transform is used to reduce the problem to a pair of dual integral equations, which is then expressed in a Fredholm integral equation of the second kind. We assume that the properties of the functionally graded piezoelectric material vary continuously along the thickness. The impermeable crack boundary condition is adopted. Numerical values on the dynamic stress intensity factors are presented for the functionally graded piezoelectric material to show the dependence of the gradient of material properties, crack moving velocity, and eccentricity. The dynamic stress intensity factors of a moving crack in functionally graded piezoelectric material increases when the crack moving velocity, eccentricity of crack location, material property gradient, and crack length increase. This paper was recommended for publication in revised form by Associate Editor Hyeon Gyu Beom Jeong Woo Shin received a B.S. and M.S. degree in Mechanical Engineering from Yonsei University in Seoul, Korea in 1998 and 2000, respectively. A major field of Mr. Shin is fracture mechanics. He is currently working on the KARI (Korea Aerospace Research Institute) as a senior researcher. He conducted load analysis of fixed wing aircraft and full scale airframe static test at the KARI. He is now developing landing gear in the KHP (Korea Helicopter Program) as a performance engineer.  相似文献   

15.
从研究环形界面双相材料平面任点处沿径向、环向作用单位力时的弹性力学基本解出发,利用Betti定律、几何关系和虎克定律得到双材料平面环向裂纹问题的位移场和应力场表达式,经代入裂纹岸应力边界条件,导出极坐标下以裂纹岸位移间断为基本未知量的超奇异积分方程组;通过适当的积分变换,用有限部积分原理处理方程组中所包含的两类奇异积分—Cauchy奇异积分和超奇异积分,解决极坐标下环形界面双材料平面环向裂纹问题用超奇异积分方程法的理论描述与数值算法。在嵌入物半径足够大时,计算结果与已发表文献对直线界面情况下平行于界面裂纹问题的计算结果一致。  相似文献   

16.
The dynamic response of a cracked functionally graded piezoelectric material (FGPM) under transient anti-plane shear mechanical and in-plane electrical loads is investigated in the present paper. It is assumed that the electroelastic material properties of the FGPM vary smoothly in the form of an exponential function along the thickness of the strip. The analysis is conducted on the basis of the unified (or natural) crack boundary condition which is related to the ellipsoidal crack parameters. By using the Laplace and Fourier transforms, the problem is reduced to the solutions of Fredholm integral equations of the second kind. Numerical results for the stress intensity factor and crack sliding displacement are presented to show the influences of the elliptic crack parameters, the electric field, FGPM gradation, crack length, and electromechanical coupling coefficient.  相似文献   

17.
In this paper, the anti-plane transient response of a central crack normal to the interface between a piezoelectric ceramics and two same elastic materials is considered. The assumed crack surfaces are permeable. By virtue of integral transform methods, the electroelastic mixed boundary problems are formulated as two set of dual integral equations, which, in turn, are reduced to a Fredholm integral equation of the second kind in the Laplace transform domain. Time domain solutions are obtained by inverting Laplace domain solutions using a numerical scheme. Numerical values on the quasi-static stress intensity factor and the dynamic energy release rate are presented to show the dependences upon the geometry, material combination, electromechanical coupling coefficient and electric field.  相似文献   

18.
Stress and displacement fields for an unsteadily propagating crack under mode I and II loading are developed through an asymptotic analysis. Dynamic equilibrium equations for the unsteady state are developed and the solution to the displacement fields and the stress fields for a crack propagating with high crack tip acceleration, deceleration and rapidly varying stress intensity factor. The influence of transients on the higher order terms of the stress fields are explicitly revealed. Using these stress components, isochromatic fringes around the propagating crack are generated for different crack speeds, crack tip accelerations and the time rate of change of stress intensity factor, and the effects of the transients on these fringes are discussed. The effects of the transients on the dynamic stress intensity factor are discussed when a crack propagates with high acceleration and deceleration. The effect of transient on the time rate of change of dynamic stress intensity factor below Rayleigh wave speed in an infinite body is also studied.  相似文献   

19.
This article deals with a numerical investigation of fluid inertia effects on inclined slider bearings lubricated by couple stress fluids. Convective inertial forces are considered in the film fluid. A reduced version of the Navier-Stokes equations is thus derived. The non-Newtonian couple stress behavior of the lubricant is described based on the microcontinuum Stokes theory. The governing partial differential equations are discretized by finite differences based on boundary layer–type equations. The resulting algebraic equations are solved using a Gauss-Seidel method. Compared to the case of the non-inertia Newtonian lubricant, the couple effects of fluid inertia forces and non-Newtonian couple stresses provide a significant improvement in slider bearing load capacity.  相似文献   

20.
研究了含有裂纹的金属板料在激光冲击波载荷作用下裂纹尖端应力强度因子和裂纹扩展速度的变化,利用断裂力学理论,对激光冲击加载下裂尖参数计算模型进行优化,采用应力强度因子叠加法,将外加载荷引起的应力强度因子和激光冲击后残留的残余压应力引起的应力强度因子叠加,推导出下裂纹尖端应力场强度因子表达式,由此可精确计算出金属板料的裂纹萌生寿命和裂纹扩展速度,实验验证了航空钛合金Ti6Al4V激光冲击后残余应力对裂纹扩展速度的影响,从而建立了激光冲击作用对板料裂纹扩展的影响的理论模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号