首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
通过FCC重汽油馏分加氢脱硫-辛烷值恢复两段工艺的温度条件实验,表明随反应温度升高,加氢脱硫单元中产物硫含量降低,烯烃含量降低,265 ℃后烯烃含量降幅增大,与原料相比降低29.4%;辛烷值恢复单元可使加氢脱硫产物的硫进一步得以脱除,在370 ~375℃,随温度升高,硫含量下降趋势明显,产物的烯烃含量较加氢脱硫产物进一步降低,随温度升高,烯烃含量小幅降低,365℃后,烯烃体积分数低于18%;对于硫质量分数770 μg/g的FCC汽油,在生产国Ⅳ标准汽油时,重汽油馏分加氢脱硫-辛烷值恢复两段工艺适宜的一反/二反温度为250~265℃/365℃.  相似文献   

2.
《精细石油化工》2013,(6):70-74
对中石化天津分公司的催化裂化(FCC)汽油进行了实沸点切割,采用气相色谱-硫化学发光检测器(GC-SCD),研究了催化裂化汽油(FCC汽油)中不同馏分段各种硫化物的类型及分布规律。FCC汽油馏份中主要的硫化物为苯并噻吩、甲基苯并噻吩、C3-噻吩、C4-噻吩、噻吩、3-甲基噻吩、2-甲基噻吩、四氢噻吩、2,4-二甲基噻吩、2,3-二甲基噻吩、3,4-二甲基噻吩,以噻吩类尤其是苯并噻吩含量最高,噻吩类化合物(包括苯并噻吩,甲基苯并噻吩,甲基噻吩,二甲基噻吩)的含量占汽油总硫含量的80%以上。分析结果为加氢脱硫催化剂和工艺研究提供了依据。  相似文献   

3.
HY分子筛催化FCC汽油噻吩类硫化物烷基化反应的研究   总被引:1,自引:0,他引:1  
采用HY分子筛催化FCC汽油中噻吩类硫化物烷基化硫转移反应,考察了反应温度、反应时间对HY分子筛烷基化催化性能的影响以及反应前后油品硫形态和烃组成的变化。结果表明:采用HY分子筛为催化剂,在反应温度130 ℃、反应时间60 min时,馏程小于120 ℃的轻馏分中有90.98%的硫化物转移到大于120 ℃的重馏分中。将FCC汽油的烷基化硫转移技术与加氢技术的组合工艺与选择性加氢脱硫技术进行比较,该组合工艺能在保证轻馏分收率的前提下,将切割点后移,可减轻重馏分汽油加氢精制的负荷,降低轻馏分中的硫含量和减少油品的辛烷值损失。  相似文献   

4.
催化裂化汽油络合萃取深度脱硫实验研究   总被引:1,自引:0,他引:1  
采用自制络合萃取剂TS-1对中国石油四川石化公司南充炼油厂催化裂化(FCC)重汽油和全馏分汽油进行脱硫,考察了萃取温度、萃取时间、相分离时间、萃取剂用量[m(萃取剂)/m(汽油)]等工艺条件对脱硫效果的影响,还研究了萃取剂对类型硫的选择性和萃取剂的脱硫效果。结果表明:最佳萃取温度为30℃,最佳萃取时间为7 min,最佳相分离时间为15 min;在最佳工艺条件下对硫质量分数为202×10-6的FCC重汽油脱硫,萃取剂用量为0.003,0.019时精制汽油的硫质量分数分别为138×10-6,49×10-6,汽油收率分别为99.6%,99.5%;萃取剂对FCC重汽油和FCC全馏分汽油中硫醇硫的脱除率均为100.0%,对二硫化物硫的脱除率分别为66.7%和80.0%,对硫醚硫的脱除率分别为85.7%和87.5%,对噻吩硫的脱除率分别为42.1%和32.0%。  相似文献   

5.
几种汽油脱硫工艺中含硫化合物类型变化规律   总被引:5,自引:0,他引:5  
采用气相色谱-原子发射光谱联用(GC—AED)技术,研究了几种不同的脱硫工艺(加氢脱硫、吸附脱硫和抽提脱硫)中各种含硫化合物的变化。加氢脱硫工艺中含硫化合物的脱除效果最好,硫脱除率可达98%以上,硫醇、硫醚最易脱除,仅有少量的烷基取代噻吩不易被脱除,加氢脱硫条件的选择应以汽油中噻吩类化合物的含量而定;吸附脱硫工艺中,硫醇、硫醚、四氢噻吩类化合物最易脱除,受空间位阻的影响,取代噻吩比噻吩难脱除;在抽提脱硫工艺中,因苯并噻吩与所用抽提剂结构相近,最易被脱除,而空间位阻较大的三甲基噻吩和四甲基噻吩不能被脱除。采用GC—AED技术,可根据汽油馏分中含硫化合物的分布来选择合适的脱硫工艺。  相似文献   

6.
考察了中东VGO及其9个馏分的各类型硫化物分布规律,对比了加氢前后VGO中硫形态的分布变化。采用四丁基高碘酸铵选择性氧化法、柱分离-X射线荧光光谱法,并利用傅里叶变换离子回旋共振质谱仪(FT-ICR MS)分析了中东VGO不同馏分段的硫醚硫、噻吩硫、二苯并噻吩及更复杂的苯并噻吩类硫化物的分布规律。结果表明:中东VGO中硫醚硫约占总硫的13.6%,其它均为噻吩类硫化物;随着馏分沸点升高,各馏分总硫含量、硫醚硫含量、噻吩硫含量均呈增加趋势,硫醚硫在各馏分总硫中的比例逐渐升高;在噻吩硫中,烷基噻吩类硫含量下降,且主要集中在蜡油低沸点馏分中,烷基苯并噻吩类硫含量逐渐下降,其它更复杂含硫化合物硫含量随着馏分沸点的升高而增加;加氢处理后总硫含量大幅度降低,硫醚硫、苯并噻吩类硫含量的比例降低,其它更复杂含硫化合物硫含量的比例增加;随着加氢深度增加,硫醚硫、烷基噻吩硫含量的比例逐渐降低,其它更复杂含硫化合物硫含量的比例逐渐增加。  相似文献   

7.
FCC汽油硫化物在ZSM-5催化剂上的加氢脱硫路径   总被引:1,自引:0,他引:1  
 采用气相色谱-原子发射光谱(GC-AED)方法,考察了催化裂化(FCC)汽油中的硫化物和相应模型硫化物在ZSM-5催化剂上的催化转化性能.结果表明, FCC汽油硫化物总转化率为86.3%, 其中,硫醚和四氢噻吩的转化率都达到100%, 硫醇、噻吩、烷基噻吩和苯并噻吩的转化率分别为96.6%、78.8%、85.8%和81.4%. 3-甲基噻吩在ZSM-5催化剂上的转化产物中含有噻吩、2-甲基噻吩、2,5-二甲基噻吩、2,4-二甲基噻吩和2,3-二甲基噻吩.烷基噻吩和苯并噻吩硫化物在ZSM-5催化剂上脱硫反应网络中, 一方面含有直接加氢脱硫反应, 另一方面含有包括歧化、异构化和裂解等反应的间接加氢脱硫反应.  相似文献   

8.
采用气相色谱和硫化学发光检测器(GC—SCD),建立了汽油馏分中各种硫化物类型分布的分析方法。考察了色谱条件对汽油馏分中各种硫化物分离的影响,定性了汽油馏分中的107个硫化物,测定出当硫化物中的硫含量在0.2—200ng/ul时,其峰面积与质量浓度呈较好的线性关系,相关系数达0.999,响应与硫化物的类型无关。汽油中几种主要硫化物(噻吩、正丁硫醇、2-甲基噻吩、3-甲基噻吩、2,4-二甲基噻吩)浓度测定值重现性的相对标准偏差(RSD)均小于5.0%。当信噪比(S/N)为3时,测得2一甲基噻吩的检测限为0.1ng/ul。本研究所建立的方法可用于分析不同装置的汽油馏分的硫化物形态分布规律。  相似文献   

9.
生产硫质量分数不大于10μg/g的超低硫汽油是国内外清洁汽油发展的大趋势。催化裂化(FCC)汽油是国内外车用清洁汽油的主要调合组分,降低FCC汽油硫含量是生产超低硫汽油的关键。无论FCC汽油选择性加氢脱硫或吸附脱硫技术,生产超低硫汽油的主要问题是产品RON损失较大。抚顺石油化工研究院通过活性金属含量的改变、添加助剂、载体改性等,开发出了新一代高加氢脱硫选择性、低烯烃加氢饱和活性的ME-1催化剂。ME-1催化剂与参比剂相比,在反应温度低10℃的情况下,重馏分烯烃饱和率减少22.9%~32.4%,RON少损失1.3~1.6个单位,因此,用ME-1催化剂生产超低硫汽油时,产品RON损失大大减少。FCC原料预处理技术与采用新一代催化剂的FCC汽油选择性加氢脱硫技术组合是在辛烷值损失更低的情况下生产超低硫汽油的科学、经济的技术方案。  相似文献   

10.
在质量范围150~1200Da、平均质量分辨率(m/Δm50%)为210000、质量精度小于1μg/g的条件下,采用大气压光致电离源(APPI)的9.4T傅里叶变换离子回旋共振质谱仪(FT-ICR MS)考察了减压蜡油(VGO)加氢精制前后及其后续FCC重循环油中含硫化合物类型分布。结果表明,VGO经加氢精制后,其中的含硫化合物的硫类型分布发生了明显的变化。在深度加氢精制VGO中,含硫化合物主要形态-16S,-18S,-20S(二苯并噻吩系列、菲基噻吩系列);VGO中加氢脱除由易到难的含硫化合物的顺序为含2个噻吩环的含硫化合物、含3个以上苯环的稠环噻吩系列、噻吩系列、苯并噻吩系列、萘苯并噻吩系列、二苯并噻吩及菲基噻吩系列;经过催化裂化之后,苯并噻吩和二苯并噻吩类硫化物主要传递到柴油馏分中;FCC重循环油中,含硫化合物主要形态为萘苯并噻吩类及更高稠环的噻吩类含硫化合物,烷基侧链碳数的集中分布范围为0~5。  相似文献   

11.
以FCC汽油为原料,在中型试验装置上考察230~400℃范围内硫化温度对MoCo/Al2O3催化剂加氢脱硫率及烯烃加氢饱和率、产品辛烷值损失的影响。结果表明,在反应温度260℃下,随着硫化温度的提高,加氢脱硫率由84.4%逐步提高到91.1%;在反应温度280℃下,加氢脱硫率均可维持在96.0%以上,受硫化温度的影响较小。在上述两种情况下,250℃硫化时催化剂的烯烃加氢饱和率最低,辛烷值损失最小。表明250℃下硫化充分且碳含量较少是其FCC汽油加氢脱硫选择性最好的原因。  相似文献   

12.
流化催化裂化汽油含硫化合物生成规律的考察   总被引:1,自引:1,他引:0  
在小型固定流化床装置上采用流化催化裂化(FCC)催化剂、以FCC汽油轻馏分和H2S标准气为原料,考察了催化剂类型、原料组成和反应条件(反应温度、催化剂与原料油的质量比(剂油比)和重时空速)对硫化物生成的影响。实验结果表明,FCC汽油中的烯烃与H2S反应主要生成噻吩类硫化物和部分硫醇;在REUSY分子筛催化剂(催化剂A)上的硫化物收率比在ZRP型择形分子筛催化剂(催化剂B)上的高;且硫化物收率随H2S和烯烃含量的增加呈线性增长。受反应温度对烯烃转化程度的影响,较高的反应温度有利于抑制烯烃与H2S反应。因为反应机理及催化剂性质对噻吩类硫化物和硫醇的生成影响不同,两者收率随剂油比和重时空速的变化趋势不同,但变化幅度均不大,因而总硫化物收率随重时空速和剂油比的变化幅度也不大。  相似文献   

13.
采用微库仑技术和色谱-硫化学发光检测(SCD)偶联技术系统考察了以微孔和介孔分子筛为载体的多种吸附剂对FCC汽油和HDS汽油的选择性吸附脱硫性能,探讨了汽油选择性吸附脱硫过程中硫化物的脱除规律。结果表明:CeY对FCC汽油及HDS汽油均表现出较好的脱硫效果;NaY、NiY等微孔分子筛吸附剂及SBA-15,MCM-41,AlSBA-15,CuO-SBA-15等介孔分子筛吸附剂对FCC汽油及HDS汽油中的噻吩尤其是对小分子烷基取代噻吩类硫化物的吸附选择性较差;对同一种吸附剂,汽油中硫化物的组成对其选择性吸附脱硫效果有较大的影响。  相似文献   

14.
在催化精馏塔中对FCC汽油催化精馏烷基化硫转移工艺进行考察,采用树脂催化剂,常压、连续操作,适宜的进料方式为下进料方式,回流质量比为2.0。2 016 h连续运行试验表明,催化剂性能稳定,塔顶汽油硫含量在30~40 μg/g之间,硫转移率平均值为91.14%。  相似文献   

15.
采用纤维膜氧化萃取-光催化氧化组合超深度脱硫工艺对催化裂化汽油(FCC汽油)进行精制,考察了操作条件对FCC汽油中硫醇硫、硫醚硫、噻吩硫脱除率的影响。实验结果表明,萃取操作的适宜条件为常压、萃取温度30℃、剂油体积比1:1.5;光催化氧化操作的适宜条件为反应温度30~40℃、反应时间1h。在以上操作条件下,精制油中的硫含量为8.7μg/g,达到欧V排放标准对汽油硫含量的要求,油收率超过95%。  相似文献   

16.
FCC汽油硫化物的生成动力学   总被引:3,自引:0,他引:3  
 在小型固定流化床反应器中,在反应温度400~500℃、剂/油质量比6、质量空速10h-1条件下,消除内、外扩散影响,考察了FCC汽油烯烃与H2S 在MLC-500催化剂上反应生成硫醇、噻吩等汽油中硫化物的动力学。通过无H2S参与的FCC汽油裂化反应研究消除温度对烯烃催化转化影响,在其基础上建立了关于汽油烯烃与H2S反应生成汽油硫化物的幂函数型本征动力学模型,其中噻吩硫及总硫生成的活化能分别为28810 J/mol、25376J/mol,二者对应烯烃的反应级数分别为0.38、0.36,对应H2S的反应级数分别为0.22、0.27。残差检验和统计检验结果表明,所得动力学模型是合理、可靠的,能够真实反映硫化物生成反应的特性。  相似文献   

17.
根据酸-碱相互作用理论,对石脑油脱芳烃-FCC汽油耦联脱硫工艺进行实验研究。在无水AlCl3与石脑油质量比为0.06、反应温度为70 ℃、反应时间为60 min、络合脱芳烃助剂L与石脑油质量比为0.011的条件下,石脑油的芳烃质量分数可以从8.15%降至0.46%,脱芳烃率为94.36%。将石脑油络合脱芳烃生成的芳烃络合物MTS-1作为FCC汽油的络合脱硫剂,在反应温度为35 ℃、反应时间为3 min、剂油质量比为0.05的条件下,FCC汽油中的硫化物与络合物中的芳烃发生络合置换,脱硫率为72.24%,汽油质量收率为99.81%,汽油硫质量分数从526 μg/g降至146 μg/g,达到国Ⅲ排放标准对车用汽油硫含量的要求。  相似文献   

18.
电位滴定法分析催化裂化汽油中类型硫含量   总被引:1,自引:0,他引:1  
对已有催化裂化汽油中类型硫分析方法进行了改进,提出以电位滴定仪为主要分析仪器的汽油中类型硫的分析方法。利用该方法对3座不同炼油厂生产的催化裂化汽油中的类型硫进行了分析。结果表明,硫醇硫和二硫化物硫含量最低,硫醚硫含量中等,噻吩硫含量最高(占总硫质量分数的70%以上),后两者之和占总硫质量分数的90%左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号