首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用大应变轧制技术制备AZ31合金板材,研究了轧制温度对板材显微组织、宏观织构和力学性能旳影响。结果表明,轧制温度为200℃时,板材发生开裂,轧制温度升高至250~400℃时,大应变轧制可以成功进行;在250~400℃的轧制温度范围内,板材再结晶晶粒尺寸和基面织构强度随轧制温度的升高而增大,其力学性能则随轧制温度的升高而下降;轧制温度为250℃时,板材具有良好的综合力学性能,其抗拉强度、屈服强度和伸长率分别为325.7 MPa、213.2 MPa和29.8%。  相似文献   

2.
研究了Ca和Zr元素对AZ31镁合金铸态显微组织和力学性能的影响,并探讨其化学成分与组织结构和力学性能之间的变化.结果表明,在AZ31镁合金中加入Ca后,合金的组织明显细化,晶间析出相增多,β Mg17Al12相数量减少,当Ca含量为0.37%时,在晶界上出现了新相Al2Ca相,Al2Ca相对合金有强化作用,合金的抗拉强度为190.4 MPa.当Ca含量达到1.54%时,晶粒尺寸最小为63.4 μm;采用电磁悬浮铸造技术,在AZ31镁合金中加入Zr,可以细化合金的显微组织,提高其力学性能,当Zr含量达到0.07%时,合金的抗拉强度为210.8 MPa,与铸态AZ31镁合金相比提高了19.56%,伸长率为12.9%,提高了20.56%.  相似文献   

3.
AZ31B镁合金挤压工艺研究   总被引:16,自引:0,他引:16  
《金属成形工艺》2002,20(5):11-14
  相似文献   

4.
在不同的轧制温度下,对AZ31镁合金板进行轧制,然后取出轧板立即进行水冷、空冷和退火3种不同的后处理。探究轧制温度和后处理对镁合金显微组织和力学性能的影响。结果表明,轧制温度为250、300℃时,水冷和空冷处理后板材存在着大量的孪晶,350℃时由于轧制温度较高,孪晶的数量很少;水冷处理后的平均晶粒尺寸要小于空冷,空冷处理之后的孪晶数量略少于水冷,当轧制温度为350℃时,退火处理后,晶粒尺寸减小,晶粒趋于等轴状,晶格畸变程度低。在相同的轧制温度下,水冷处理的镁合金板材的屈服强度、抗拉强度和硬度较高;退火处理后可以显著提高板材的伸长率,但屈服强度、抗拉强度略有下降。轧制温度升高时,3种后处理方式之间屈服强度和抗拉强度的最大差值会减小。  相似文献   

5.
采用电子背散射衍射仪和透射电子显微镜研究快速冷却对6 mm厚AZ31B镁合金搅拌摩擦焊缝厚度方向的显微组织和力学性能的影响。结果表明,液态二氧化碳冷却可促进焊缝顶部形成具有高位错密度、大量{1012}孪晶和第二相颗粒的细晶结构。{1012}孪晶使焊缝顶部区域的基面织构显著降低。接头顶部区域的强度和断后伸长率较底部区域均明显提高,焊接效率可达93%。这为在镁合金搅拌摩擦焊接头中制备梯度结构提供一种简单有效的方法。  相似文献   

6.
7.
AZ113镁合金显微组织和力学性能的研究   总被引:3,自引:1,他引:2  
采用OM、SEM和XRD等手段对AZ113镁合金铸态、挤压态、热处理状态下合金相的种类、形态、数量和分布进行了分析,探讨了各种状态下AZ113镁合金的力学性能;同时研究了短时高温对AZ113镁合金的组织和力学性能的影响.结果表明,AZ113镁合金挤压后,晶粒由原来的120μm减小到30μm,抗拉强度从212.8MPa提高到353.0MPa,断后伸长率从2.8%提高到9.5%;T4处理后,合金伸长率达到最大值(10.3%);T5处理后,合金的抗拉强度达到最大值(420.3MPa);T6处理后,合金的抗拉强度和伸长率分别为365.1MPa和8%.  相似文献   

8.
研究了挤压铸造AZ91D、AM50A镁合金的组织与力学性能及稀土元素和热处理对合金组织与力学性能的影响.试验结果表明,挤压铸造使α相枝晶细化,形态改善,β相细小呈不连续分布;减少了缩松、气孔等缺陷,从而提高了镁合金铸件质量和力学性能.铸态AZ91D的力学性能为σb=238 MPa、δ5=5.5%、HBS75、Ak=7.8 J;AM50A为σb=224 MPa、δ5=9.4%、HBS56、Ak=12.1 J.稀土元素使镁合金组织细化,析出富铝稀土相,提高了镁合金的抗拉强度和硬度,但伸长率和冲击韧度降低.挤压铸造镁合金件经固溶处理后,β相大部分溶解并固溶于α相中,提高了镁合金的强塑性;再经时效处理,析出细小弥散的二次β相,进一步使镁合金强化.在合适的挤压铸造工艺参数和热处理下,铸件的力学性能可达AZ91D为σb=263 MPa、δ5=7.4%、HBS90、Ak=12 J;AM50A为σb=251 MPa、δ5=11.8%、HBS74、A k=16.5 J.  相似文献   

9.
采用光学显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)和万能试验机,研究了挤压Mg-2.19Y-0.66Ni-0.76Co(摩尔分数,%)合金板材的显微组织和力学性能。结果表明:铸态合金主要由α-Mg基体、晶内14H-LPSO相、分布在晶界的18R-LPSO、Mg Y(Co,Ni)4及少量弥散的富Y相组成。均匀化过程中合金发生由晶界的18R-LPSO相向晶内的14H-LPSO相的相转变。挤压后合金发生动态再结晶,晶粒显著细化,并形成弱的基面织构,第二相碎化并沿挤压方向分布。拉伸测试结果显示,挤压合金表现出优异的强塑性匹配,其室温的屈服强度(σTYS)、极限抗拉强度(σUTS)和断裂伸长率(ε)分别为277.2 MPa、199.3 MPa和32.77%。该合金表现出良好的强度和塑性平衡(采用极限抗拉强度断裂伸长率的乘积值表达塑性:σUTS×ε=9.08 GPa·%),其室温下高的拉伸强度主要是由于晶粒细化和LPSO相强化,而良好的延展性主要归因于晶粒细化和织...  相似文献   

10.
李卫民 《铸造技术》2014,(6):1157-1159
研究了Sb对AZ80镁合金显微组织和力学性能的影响。结果表明,当加入0.5%Sb时,AZ80镁合金的晶粒最细小,冲击韧度和拉伸强度都达到最大值,硬度达到最低值。继续增大Sb含量,合金的冲击韧度和强度降低,硬度增加。而且Sb的加入可使镁合金的拉伸断口由解理断裂转变为准解理断裂。  相似文献   

11.
通过往复挤压(CEC)变形来细化AM60B镁合金的组织。结构表明:随着CEC道次的增加,组织得到明显细化。当材料达到临界最小晶粒尺寸时,进一步挤压变形也很难使组织得到明显的细化。细小的组织具有优异的力学性能,合金的硬度、屈服强度、抗拉强度和断后伸长率分别由铸态的62.3、64MPa、201MPa和11%上升N-道次变形后的72.2、183.7MPa、286.3MPa和14.0%。但是再进一步挤压变形材料的力学性能增加幅度不明显,经四道次挤压变形后其硬度、屈服强度、抗拉强度和断后伸长率分别为73.5、196MPa、297MPa和16%  相似文献   

12.
The effect of extrusion ratio on microstructure and mechanical properties of as-extruded Mg-6Sn-2Zn-1Ca (TZX621) (mass fraction, %) alloy was investigated. It is found that incomplete dynamic recrystallization (DRX) took place in as-extruded TZX621 alloy. As the extrusion ratio was increased from 6 to 16, both fraction of un-DRXed grains and average size of DRXed grains in as-extruded TZX621 alloy decreased and the basal texture was weakened. Coarse CaMgSn phase was broken into particles and fine Mg2Sn phase precipitated from α-Mg matrix during hot extrusion. Yield strength, ultimate tensile strength and elongation of as-extruded TZX621 alloy with extrusion ratio of 16 reached 226.9 MPa, 295.6 MPa and 18.1%, which were improved by 36.0%, 17.7% and 13.5%, respectively, compared to those of as-extruded TZX621 alloy with extrusion ratio of 6.  相似文献   

13.
文章研究挤压条件下挤压速度和电磁铸造锭坯对挤压态AZ31镁合金板材组织和性能的影响。研究结果发现,挤压速度比较低时,板材晶粒尺寸小,板材的表面质量比较好;随着挤压速度的降低,抗拉强度、屈服强度和延伸率都有一定的提高。由于镁合金是HCP的晶体结构,同时对挤压速度非常敏感,对变形均匀性影响比较大,因此造成挤压板材的内外晶粒大小不均。在电磁场的作用下,溶质在晶内的固溶度增大,同时晶粒大小也比常规铸造的细小,因此电磁铸造的锭坯经挤压机挤压后,挤压板材的晶粒尺寸比较细小,且强度和塑性都有所提高。  相似文献   

14.
15.
对AZ80镁合金管材的挤压工艺进行研究,对挤压前后材料的组织与力学性能进行分析。结果表明,经过热挤压后,镁合金的晶粒细化,力学性能有较大提高。晶粒尺寸由挤压前铸态的28μm细化到挤压后的4μm,抗拉强度由162 MPa提高到265 MPa,屈服强度由74 MPa提高到180 MPa,伸长率由4%提高到14%。随着挤压比的增加,晶粒细化明显,伸长率和屈服强度增加。对于挤压AZ80镁合金管材,合理的挤压工艺参数:挤压比为18.2,坯料温度为390℃,模具预热温度为360℃,挤压速度为1 mm/s,凹模锥半角为60°-70°。  相似文献   

16.
研究了轧制成形宽幅AZ31B镁合金薄板(宽度>1200 mm)的组织和性能以及退火对其组织和性能的影响。结果表明,两种规格薄板加工态组织中既有细小的动态再结晶晶粒,又有粗大的晶粒和孪晶。随着退火温度的升高,板材的抗拉强度和屈服强度逐渐减小,伸长率提高。  相似文献   

17.
18.
文章研究了电磁连铸AZ31镁合金经热挤压变形后的微观组织和力学性能。结果表明,挤压过程中的动态再结晶能够显著细化晶粒,局部细晶区的平均晶粒为2μm。与铸态合金相比,挤压后的AZ31镁合金具有更细小的晶粒和更均匀的微观组织。挤压变形后产生强烈的基面织构;挤压后材料的力学性能显著提高。屈服强度、抗拉强度和断面收缩率随着挤压比的增大而增大。挤压比为25时,屈服强度、抗拉强度和断面收缩率分别为259MPa,357MPa和30.5%,比铸态合金分别提高了86.33%,64.52%和67.40%。随着挤压比的增大,晶粒细化效果更为明显,微观组织更均匀。断口形貌分析表明,挤压变形后材料由韧脆混合型断裂,转变为韧性断裂。  相似文献   

19.
Mg-9Al-xPr (x=0.4, 0.8 and 1.2, mass fraction, %) magnesium alloys were prepared by high-pressure die-casting technique. The effects of Pr on the microstructures of die-cast Mg-9Al based alloy were investigated by XRD and SEM. Needle-like Al11Pr3 phase and polygon Al6Mn6Pr phase are found in the microstructure. With 0.4% Pr addition, fine needle-like Al11Pr3 phase and a small amount of polygon Al6Mn6Pr phase near the grain boundary are found in the microstructure. Increasing Pr addition to 0.8%, lots of coarse needle-like Al11Pr3 phase within grain and polygon Al6Mn6Pr phase on grain boundary are observed. Further increasing Pr addition, the size of needle-like Al11Pr3 phase decreases, while the size of polygon Al6Mn6Pr relatively increases. The mass fraction of Pr at around 0.8% is considered to be suitable to obtain the optimal mechanical properties. The optimal mechanical properties are mainly resulted from grain boundary strengthening obtained by precipitates and solid solution.  相似文献   

20.
在不同的挤压温度和挤压比下,将AZ31B镁合金机加屑冷压后热挤压固结而再生镁合金。与铸锭挤压合金对比,从动态再结晶组织与屑间结合情况两个主要方面分析了加工工艺对再生合金力学性能的影响。随着挤压温度升高,再生合金的极限抗拉强度和延伸率先增加而后降低。随挤压温度升高,晶粒长大与屑间结合增强的相反作用共同导致了再生合金力学性能的变化。当挤压比从4:1 增加到 44:1,晶粒细化且屑间结合增强,使再生合金的抗拉强度增加。而当挤压比高于25:1时,由于显著的形变强化作用导致延伸率下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号