首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
本文以千米深井——朱集煤矿1242(1)首采工作面的瓦斯治理为例,提出并实施了地面钻井、高抽巷和采空区埋管相结合的瓦斯分源治理综合技术,分别抽采上覆13-1煤层卸压瓦斯、顶板瓦斯富集区瓦斯和上隅角瓦斯。实践表明,1242(1)工作面平均绝对瓦斯涌出量为68.8m3/min,地面钻井平均瓦斯抽采量为28.7m3/min,占瓦斯涌出量的42.2%,高抽巷平均瓦斯抽采量为30.7m3/min,占瓦斯涌出量的45.2%,瓦斯抽采率高达87.4%,回风流瓦斯浓度低于0.4%,实现深井高瓦斯煤层群首采下保护层工作面的安全高效开采。研究成果对类似条件矿井首采层工作面的瓦斯治理有指导价值。  相似文献   

2.
近距离煤层群被保护层开采瓦斯综合治理技术研究   总被引:1,自引:0,他引:1  
近距离煤层群被保护层回采过程中,由于被保护层与保护层之间距离较小,保护层采空区内积聚的瓦斯通过采动影响所产生的裂隙大量涌入被保护层工作面,容易造成工作面瓦斯超限.本文以新庄孜矿62113被保护层工作面回采为例,通过调节通风负压和抽采系统相结合的瓦斯治理措施,改变工作面及邻近层瓦斯流向,抑制瓦斯涌向回采工作面,从而增加瓦斯抽采量,降低回风瓦斯浓度,有效的保证了工作面的安全回采.  相似文献   

3.
阳泉三矿大采长综放工作面瓦斯涌出特征分析   总被引:7,自引:0,他引:7  
大采长综放工作面单位时间内瓦斯涌出量增大,经常造成工作面回风隅角和回风巷瓦斯质量浓度超限.通过分析综放工作面瓦斯涌出源,可以了解其瓦斯涌出特征.对阳泉三矿大采长K8206综放工作面初采期和回采期的瓦斯涌出规律的分析可知,初采期瓦斯涌出量具有大幅度波动性,其原因主要为采空区瓦斯不断地、周期性地涌入.正常回采期,只要高抽巷的抽放负压足够大,邻近层瓦斯涌入工作面的问题就能解决;而大采长综放工作面本煤层瓦斯涌出量增大,则需要增加通风量或者采用新的通风方式.  相似文献   

4.
大采长综放工作面单位时间内瓦斯涌出量增大,经常造成工作面回风隅角和回风巷瓦斯质量浓度超限.通过分析综放工作面瓦斯涌出源,可以了解其瓦斯涌出特征.对阳泉三矿大采长K8206综放工作面初采期和回采期的瓦斯涌出规律的分析可知,初采期瓦斯涌出量具有大幅度波动性,其原因主要为采空区瓦斯不断地、周期性地涌入.正常回采期,只要高抽巷的抽放负压足够大,邻近层瓦斯涌入工作面的问题就能解决;而大采长综放工作面本煤层瓦斯涌出量增大,则需要增加通风量或者采用新的通风方式.  相似文献   

5.
瓦斯治理仍是世界性难题。本文针对赤峪煤矿近距离高瓦斯煤层群首采保护层C0202工作面瓦斯治理问题,提出了沿空留巷Y型通风配合本煤层顺层钻孔、两巷底板穿层钻孔、顶抽巷高位穿层钻孔、采空区埋管的"五措并举"治理措施,实现了工作面成功连续留巷200m,瓦斯抽采率高达70%,回风流瓦斯浓度控制在0.4%左右的效果,保证了工作面的安全高效开采。该研究成果可为赋存条件相似的煤层群开采瓦斯治理提供借鉴。  相似文献   

6.
针对矿井浅部瓦斯治理模式已不能保障深部采区安全高效生产的现状,提出一种适宜矿井深部新水平开采的瓦斯综合治理模式.工作面消突采用底板岩巷穿层钻孔预抽煤巷条带瓦斯;底板岩巷布置“一巷多用”,在工作面回采工程中可兼做回风巷、尾抽巷、措施巷;回采工作面采用沿空留巷Y型通风综合治理瓦斯.其中,顺层钻孔预抽本煤层瓦斯,高位钻场顶板走向钻孔抽采裂隙带瓦斯,上隅角、尾巷埋管抽采采空区瓦斯,形成矿井三维立体瓦斯抽采体系.  相似文献   

7.
以突出矿井新庄孜矿为例,介绍了煤层群开采首采保护层卸压瓦斯抽采工程设计及被保护层瓦斯抽采效果。通过在66208工作面回采过程中瓦斯压力测定、瓦斯抽采效果和煤层最大变形量的考察,得出保护层工作面开采后,被保护层B_6煤层透气性系数增大了902倍,B_6煤层残余瓦斯含量为2.43 m~3/t;得出实际走向及倾向方向上的有效保护范围。最大化的回收煤炭资源,取得了较好的效果。  相似文献   

8.
针对中煤昔阳能源有限责任公司黄岩汇煤矿15108工作面邻近煤层瓦斯涌出量大,造成该工作面回采期间上隅角瓦斯体积分数超限的问题,采用理论计算与UDEC数值模拟,得出各覆岩下沉量及竖"三带"发育范围,对不同层位下的高抽巷抽采效果进行现场实测与评价,结果表明:煤层上方岩层随着埋深变浅各覆岩下沉量也逐渐减小,沿竖直方向能反映出竖"三带"的基本特征。竖"三带"理论计算与数值模拟结果相近,高抽巷实际布置层位与抽采效果验证了两个结果的可靠性,最终确定15108工作面裂隙带最大发育高度,为67.7~70.4 m,高抽巷合理层位应为50~70 m,此范围内高抽巷可将上隅角瓦斯体积分数控制在0.3%以下。  相似文献   

9.
以突出矿井谢桥煤矿为例,介绍了煤层群开采首采保护层卸压瓦斯抽采工程设计和被保护煤层卸压瓦斯抽采效果.实践表明,谢桥矿1242(1)保护层开采实践证明,在11-2煤层有效保护范围内的13-1煤层,可充分消除其突出危险性,并有利于被保护层瓦斯治理;经保护层开采后,不仅能最大程度消除高瓦斯突出危险煤层的瓦斯事故隐患,而且极大地提高了巷道掘进速度,从而缓解了工作面接替的紧张局面,有效提高了生产效率.保护层开采区域消突技术是防治煤与瓦斯突出最经济、有效的技术措施.  相似文献   

10.
为探究行之有效的极近距离上邻近层瓦斯抽采方法,针对兴无煤矿42207工作面上部存在极近距离上邻近层4_上煤层,且其随采随冒的充分卸压瓦斯大大增加了采空区的瓦斯涌出,极易造成上隅角和回风流瓦斯体积分数超限的问题,同时在工作面通风方式由"U+L"型改变为Y型的情况下,工作面风排瓦斯能力降低,需加大瓦斯抽采量,试验利用回采工作面前方的超前卸压效应,采用千米钻机合理施工瓦斯抽采钻孔,在极近距离上邻近层4_上煤层冒落到工作面之前对其瓦斯进行抽采。试验表明,该方法能持续高效抽采极近距离上邻近层超前卸压瓦斯,最大单孔瓦斯抽采纯量达到了1.86 m~3/min,在一定程度上解决了工作面回采期间的瓦斯超限问题,大幅度减小了通风压力,保障了工作面的安全生产。  相似文献   

11.
"三软"低透气性突出煤层瓦斯抽放工作是目前国内瓦斯治理的难题.通过对永华公司二矿"三软"低透气性高瓦斯煤层影响因素的分析,提出了详细的煤巷掘进瓦斯抽放、采煤工作面瓦斯抽放及煤体注水的瓦斯综合治理方案,并进行了工业性试验.结果表明,采用此瓦斯综合治理方案后,掘进工作面及回风流的瓦斯体积分数保持在0.1%以下,工作面瓦斯抽放率达40%以上,工作面瓦斯体积分数控制在0.5%以下,工作面煤壁强度得到了强化,瓦斯涌出得到了控制,不仅提高了工作面的单产水平,而且煤巷掘进速度也达到了每月90 m以上,实现了工作面及煤巷的安全、快速推进.  相似文献   

12.
针对高瓦斯低渗透煤层工作面瓦斯抽采与灾害控制难题,以土城矿15311综采工作面为研究对象,首先,初步分析了工作面瓦斯涌出来源,运用分源预测法预测了其瓦斯涌出含量,接着针对性地在3#煤层运用了顺层钻孔、底抽巷穿层钻孔、高位钻场以及采空区埋管等多种抽采方法,并联合工作面配风提出了立体瓦斯防治技术。最后,通过施工底抽巷截留钻孔对底抽巷溢出瓦斯进行截留抽放,考察了抽采效果。结果表明:15311综采工作面瓦斯来源主要为3#煤层和下邻近层,瓦斯抽采总量为45.4 m3/min,瓦斯抽采率为85.33%,回风流中瓦斯浓度未超过1%,瓦斯抽采达标,有效地控制了工作面高瓦斯的涌出。  相似文献   

13.
地面群孔瓦斯抽采技术应用研究   总被引:1,自引:0,他引:1  
为保证新集一矿突出煤层13-1煤北中央采区的安全开采,先后开采131103、131105等11-2煤层工作面作为保护层。首先在上述两个工作面共布置了6个地面钻孔,建立了地面群孔瓦斯抽采系统,预抽采动区被保护层13-1煤瓦斯。接下来对地面钻孔抽采瓦斯参数进行了考察,主要包括基于示踪技术考察了131105工作面采动卸压地面钻孔走向及倾向瓦斯抽采半径,统计分析被保护层瓦斯抽采率,同时就地面群孔与井下底板巷穿层钻孔瓦斯抽采两种方法进行了抽采率、工程费用等方面的对比。研究结果表明:新集一矿的地层条件下地面钻孔抽采煤层卸压瓦斯沿煤层倾向和走向的抽采半径分别不小于160m和240m;采动区地面群孔瓦斯抽采率达35%以上;地面钻孔相对比井下底板巷,在抽采瓦斯方面具有技术上可靠、安全、经济等优点。  相似文献   

14.
Severe gas disasters in deep mining areas are increasing, and traditional protective coal seam mining is facing significant challenges. This paper proposes an innovative technology using soft rock as the protective seam in the absence of an appropriate coal seam. Based on the geological engineering conditions of the new horizontal first mining area of Luling Coal Mine in Huaibei, China, the impacts of different mining parameters of the soft-rock protective seam on the pressure-relief effect of the protected coal seam were analyzed through numerical simulation. The unit stress of the protected coal seam, which was less than half of the primary rock stress, was used as the mining stress pressure-relief index. The optimized interlayer space was found to be 59 m for the first soft-rock working face, with a 2 m mining thickness and 105 m face length. The physicochemical characteristics of the orebody were analyzed, and a device selection framework for the soft-rock protective seam was developed. Optimal equipment for the working face was selected, including the fully-mechanized hydraulic support and coal cutter. A production technology that combined fully-mechanized and blasting-assisted soft-rock mining was developed. Engineering practices demonstrated that normal circulation operation can be achieved on the working face of the soft-rock protective seam, with an average advancement rate of 1.64 m/d. The maximum residual gas pressure and content, which were measured at the cut hole position of the protected coal seams (Nos. 8 and 9), decreased to 0.35 MPa and 4.87 m3/t, respectively. The results suggested that soft-rock protective seam mining can produce a significant gas-control effect.  相似文献   

15.
为有效预防煤矿瓦斯灾害,获取煤层注水促抽瓦斯的合理参数,以常村煤矿2103工作面为例,依据多相渗流理论,采用Fluent软件的VOF模型及多孔介质模型耦合求解,对煤层注水促抽瓦斯技术及其影响因素进行数值模拟,并将模拟结果应用于现场,对比分析数值模拟与现场实测数据,二者基本吻合.研究结果表明:煤层瓦斯含量以注水孔为中心径向逐步降低,以抽采孔为中心径向逐步升高;注水前抽采阶段,随着抽采时间的增加,抽采范围逐渐增大,抽采孔瓦斯流量先快速下降,后逐步缓慢降低;注水促抽阶段,随着注水时间的增加,注水范围逐渐增大,注水流量逐步降低,煤层瓦斯含量缓慢升高,抽采孔瓦斯流量逐渐增加;注水后抽采阶段,随着抽采时间的增加,压力水覆盖范围持续增大,煤层瓦斯含量逐渐降低,抽采孔瓦斯流量逐渐减小.注水时机、注水时间、注水压力、注水方式、布置方式及钻孔间距是影响煤层注水促抽瓦斯效果的6个主要因素.瓦斯正常抽采20 d后,按照一注一抽方式及5 m间距布置注抽钻孔,在8 MPa煤层注水压力下间歇注水10 d,煤层注水促抽瓦斯效果较好.  相似文献   

16.
超高压水力割缝强化抽采瓦斯技术研究   总被引:1,自引:0,他引:1  
水力割缝是一种重要的强化瓦斯抽采增透技术,现已开始在低透气性突出煤层应用。为了进一步考察其实际效果,选取新集二矿1煤组220112工作面底抽巷实施了100 MPa超高压水力割缝试验。试验结果表明:割缝后,瓦斯抽采纯量平均0.77 m3/min,是未割缝钻孔的瓦斯抽采纯量(0.34 m~3/min)的2.26倍;1煤层组瓦斯抽采钻孔抽采30、60天的抽采有效半径为5 m、7.5 m,极限抽采半径为8 m,相比水力冲孔、未割缝钻孔抽采有效半径显著增加,超高压水力割缝强化抽采瓦斯技术具有广泛的应用前景。  相似文献   

17.
When an extremely thick rock bed exists above a protected coal seam in the bending zone given the condition of a mining protective seam, this extremely thick rock bed controls the movement of the entire overlying stratum. This extremely thick rock bed, called a "main key stratum", will not subside nor break for a long time, causing lower fractures and bed separations not to close and gas can migrate to the bed separation areas along the fractures. These bed separations become gas enrichment areas. By analyzing the rule of fracture evolution and gas migration under the main key stratum after the deep protective coal seam has been mined, we propose a new gas drainage method which uses bore holes, drilled through rock and coal seams at great depths for draining pressure relief gas. In this method, the bores are located at a high level suction roadway (we can also drill them in the drilling field located high in an air gateway). Given the practice in the Halzi mine, the gas drainage rate can reach 73% in the middie coal group, with a gas drainage radius over 100 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号