共查询到12条相似文献,搜索用时 62 毫秒
1.
美国9·11恐怖袭击事件后,核电厂房抵御大型商用飞机恶意撞击成为核安全领域备受关注的热点问题。为真实准确地研究大飞机撞击下核电厂房结构的损伤破坏及振动特性,基于某新型反应堆核电厂房结构,设计了大飞机撞击钢筋混凝土核安全壳模型试验,获得了核安全壳结构遭受大飞机撞击时相对完整的试验数据及物理参数。试验结果表明:当大飞机模型以我国核电厂厂址选择安全导则中建议的基准速度100 m/s撞击时,安全壳模型发生局部碎甲破坏,但壳体的主筋整体性能完好,钢筋网有效阻止了大飞机模型的侵入破坏。依据试验结果研究了钢筋混凝土安全壳结构在大飞机撞击作用下的损伤破坏规律和特点,分析了结构的撞击振动反应特性。根据试验结果反演至原型结构,安全壳结构的环梁牛腿处和筒体与穹顶连接处峰值加速度较大,分别为39.5g和47.2g,底板处水平和竖向峰值加速度相对较小,但仍达到3.45g和4.37g。壳体直接撞击区钢筋发生屈服,而在壳体碎甲区之外,各测点的钢筋应变均小于屈服应变,钢筋未发生屈服,钢筋混凝土壳体未发生由振动导致的破坏。 相似文献
2.
3.
钢筋混凝土柱在侧向地震力作用下具有弯曲、剪切和弯剪三种失效模式。不同的失效模式下钢筋混凝土柱具有不同的地震损伤特征。因此,准确地判别钢筋混凝土柱的失效模式对于准确评估钢筋混凝土结构的抗震性能具有重要意义。利用已有的钢筋混凝土柱滞回加载试验数据,采用机器学习方法,提出了一种钢筋混凝土柱失效模式两阶段判别方法。其中,第一阶段以钢筋混凝土柱的基本设计参数为输入变量,采用机器学习中的回归算法,建立钢筋混凝土柱的受弯承载力、受剪承载力、弯曲变形和剪切变形预测模型。第二阶段以钢筋混凝土柱的受弯承载力、受剪承载力、弯曲变形和剪切变形作为输入变量,采用机器学习中的分类算法,对钢筋混凝土柱的失效模式进行自动判别,实现了准确判别钢筋混凝土柱失效模式的目的。研究结果表明:极端随机树、AdaBoost、随机森林和梯度提升算法分别对受弯承载力、受剪承载力、弯曲变形和剪切变形的预测效果最佳;极端随机树、梯度提升算法和最近邻居法分别对弯曲失效、剪切失效和弯剪失效具有最佳的分类效果;相比已有的钢筋混凝土柱失效模式分类方法,提出的两阶段分类方法具有与真实失效模式最为接近的分类结果,分类精度可以达到96%。 相似文献
4.
钢筋锈蚀是影响钢筋混凝土结构耐久性的一个重要因素,会引起结构的自振周期延长、地震需求变化及抗震能力衰减,使得锈蚀钢筋混凝土结构的地震易损性分析不同于未锈蚀钢筋混凝土结构。以一栋按我国规范设计的RC框架结构为研究对象,分别建立了未锈蚀和锈蚀结构的非线性有限元模型并进行了模型验证。分别采用云图法和条带法计算得到了钢筋混凝土结构在未锈蚀和锈蚀两种工况下的地震易损性曲线和函数参数,对锈蚀钢筋混凝土结构地震易损性分析的特殊性及其对地震易损性分析结果的影响进行了分析。分析结果表明:不考虑钢筋锈蚀引起的结构自振周期延长会错误估计锈蚀钢筋混凝土结构的地震易损性水平。采用云图法分析锈蚀钢筋混凝土结构的地震易损性会出现锈蚀结构的极限状态失效概率低于未锈蚀结构的情况。而条带法比云图法可以更好地反映钢筋锈蚀对钢筋混凝土结构地震易损性的影响。忽略钢筋锈蚀引起的结构抗震能力衰减会低估锈蚀钢筋混凝土结构地震易损性水平,建议在锈蚀钢筋混凝土结构地震易损性分析中采用基于Pushover的极限状态定义方法。 相似文献
5.
钢筋锈蚀是影响钢筋混凝土结构耐久性的一个重要因素,会引起结构的自振周期延长、地震需求变化及抗震能力衰减,使得锈蚀钢筋混凝土结构的地震易损性分析不同于未锈蚀钢筋混凝土结构。以一栋按我国规范设计的RC框架结构为研究对象,分别建立了未锈蚀和锈蚀结构的非线性有限元模型并进行了模型验证。分别采用云图法和条带法计算得到了钢筋混凝土结构在未锈蚀和锈蚀两种工况下的地震易损性曲线和函数参数,对锈蚀钢筋混凝土结构地震易损性分析的特殊性及其对地震易损性分析结果的影响进行了分析。分析结果表明:不考虑钢筋锈蚀引起的结构自振周期延长会错误估计锈蚀钢筋混凝土结构的地震易损性水平。采用云图法分析锈蚀钢筋混凝土结构的地震易损性会出现锈蚀结构的极限状态失效概率低于未锈蚀结构的情况。而条带法比云图法可以更好地反映钢筋锈蚀对钢筋混凝土结构地震易损性的影响。忽略钢筋锈蚀引起的结构抗震能力衰减会低估锈蚀钢筋混凝土结构地震易损性水平,建议在锈蚀钢筋混凝土结构地震易损性分析中采用基于Pushover的极限状态定义方法。 相似文献
6.
7.
Hu Cheng Hong‐Nan Li Dong‐Sheng Wang 《The Structural Design of Tall and Special Buildings》2019,28(1)
The deformation capacities of columns, which are the main lateral force‐resisting elements of reinforced concrete (RC) structures, have been the subject of great interest with the development of performance/displacement‐based seismic design. However, deterioration due to chloride‐induced corrosion causes a significant reduction in the seismic performance of RC columns. Although numerous investigations have focused on the deformation capacity of columns with corroded rebars and various strengthening measures have been proposed, little attention was paid to evaluating the contribution of each deformation component to the tip displacement under corrosion (i.e., bending, shear, and longitudinal bar slip at the column footing), which plays an important role in investigating and explaining the failure mechanisms of columns. This paper presents a computational prediction model to estimate the deformation capacity of RC columns with corroded rebars, and the contributions of bending and bar slip at the column footing are mainly considered in this model due to the negligible contribution of the shear deformation component for columns subjected to flexural failure mode. The calculation results obtained by the prediction model are compared with the quasistatic test results of both noncorroded and corroded RC columns. It turns out that the prediction model simulates the deformation capacity of RC columns with corroded rebars reasonably well considering its simplicity and computational efficiency, and it can be used for time‐variant capacity estimates for the lifetime seismic design and fragility assessment of RC columns exposed to corrosion. 相似文献
8.
《Structure and Infrastructure Engineering》2013,9(11):869-879
Fragility increment functions are developed to estimate the seismic fragility of reinforced concrete (RC) bridges subject to deterioration due to the onset and progression of corrosion of the reinforcement. For each mode of failure considered, the fragility at time t of a deteriorating bridge is obtained by multiplying the initial fragility of the undeteriorated bridge by a corresponding increment function expressed in terms of the environmental conditions, the original material properties, time, a measure of the seismic demand, and a set of unknown model parameters. The developed increment functions account for the effects on the fragility estimates of the loss of the reinforcement and of the increasing uncertainty over time. As an application, the developed increment functions are used to estimate the seismic fragility of an example RC bridge. The proposed fragility increment functions are useful to estimate the fragility of deteriorating bridges without any extra reliability analysis once the fragility of the undeteriorated bridge is known. In particular, the proposed fragility increment functions can be used to assess the time-variant fragility of bridges for applications such as reliability-based design, life-cycle cost analysis, and risk analysis. 相似文献
9.
Changdong Zhou Xulang Zeng Qinglong Pan Bin Liu 《The Structural Design of Tall and Special Buildings》2015,24(6):440-460
In China, a considerable proportion of reinforced concrete (RC) industrial chimneys in operation was designed and constructed in accordance with less rigorous outdated seismic criteria during the end of 19th and early 20th century. However, few research works have been reported till date on a realistic overall assessment of the seismic performance of these existing aging RC chimney structures. Therefore, in this study, fragilities of existing RC chimney were studied. For this purpose, an existing 240 m tall RC chimney was selected and structurally modeled with a lumped mass beam (stick) model by means of the OpenSees analysis program. In order to capture the uncertainties in ground motion realizations, a series of 21 ground motions are selected from the Next Generation Attenuation database as the input motions. To develop the analytical fragility curves, nonlinear incremental dynamic analysis of the studied RC chimney was then carried out using the selected input motions, which were normalized to different excitation levels. The section curvature ductility ratio was considered as the damage index. Based on material strain and sectional analysis, four limit states (LSs) were defined for five damage state. The seismic responses of the all sections were utilized to evaluate the likelihood of exceeding the LSs. Then the peak ground acceleration (PGA)‐based seismic fragility curves of the structure were constructed assuming a lognormal distribution. Finally, under the light of these fragility curves, the damage risks in existing RC chimney were discussed. The analytical results indicated that for design level earthquake of PGA = 0.1 g (g is the gravitational acceleration) and the maximum considered earthquake of PGA = 0.22 g, the probabilities of exceeding the light damage state were around 1.5% and 44%, respectively, while the exceedance probabilities corresponding to moderate, extensive and complete damage states were approximately zero in both cases. On the other hand, fragility analysis revealed that the RC chimney structure had considerable ductility capacity and was capable to withstand a strong earthquake with some structural damages. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
10.
为研究倒塌概率对非倒塌极限状态的影响,提出了考虑倒塌概率修正的结构地震易损性分析方法。基于全概率定理,将结构极限状态划分为倒塌状态和非倒塌状态两类,若结构发生倒塌则认为结构发生非倒塌极限状态破坏的概率为100%。考虑倒塌概率修正的地震易损性分析方法包含直接方法和间接方法,其中,直接方法是直接对传统地震易损性函数进行修正,而间接方法仅修正地震易损性函数中的概率地震需求参数。以4榀不同高度不同设防烈度的钢筋混凝土平面框架结构作为研究对象,选择100条实际地震动记录作为输入,分别采用直接方法和间接方法开展考虑倒塌概率修正的地震易损性分析。结果表明:倒塌概率对轻微破坏和中等破坏极限状态的影响较小,而对严重破坏极限状态的影响较大;在地震动强度较小时,两种方法对地震易损性的修正结果相差较小;随着地震动强度的提高,两种方法对地震易损性修正结果的差距逐渐增大。 相似文献
11.
沿海地区的钢筋混凝土桥梁结构在服役期间,受到疲劳荷载和氯离子侵蚀的综合作用,其使用寿命缩短。为模拟桥梁的实际工作状态,首先对钢筋混凝土梁施加疲劳荷载20万次(疲劳荷载上限分别为0.16 P u、0.24P u、0.32P u、0.40P u,P u为梁受弯极限荷载),然后经历海水浸泡和空气环境干湿循环100 d,最后静力加载获得钢筋混凝土梁受弯承载力。共完成5组10根钢筋混凝土梁试验。研究结果表明:在疲劳荷载上限不大于0.24P u时,试件性能劣化不明显;疲劳荷载上限大于0.24P u时,梁试件的初始刚度、屈服荷载和极限荷载随着疲劳荷载上限的增大而快速降低;当疲劳荷载上限为0.40P u时,梁试件的初始刚度、屈服荷载和极限荷载分别降低51.80%、21.78%、15.07%。 相似文献