共查询到19条相似文献,搜索用时 93 毫秒
1.
基于遗传算法和梯度下降的RBF神经网络组合训练方法 总被引:17,自引:0,他引:17
在使用基于梯度下降的径向基函数(RBF)神经网络学习方法时,由于网络目标函数误差曲面极其复杂,因而产生了网络收敛速度慢,且容易陷入局部极小,网络初始值的设置对网络训练结果影响很大等问题。基于遗传算法的训练方法能够摆脱陷入局部最优的困扰,但遗传算法的局部搜索能力不够,从而影响网络的训练效果。为了解决上述问题,在研究两种算法特点的基础上,提出一种组合训练方法,用提出的训练方法对UCI中的部分数据集进行了仿真实验,并将实验结果与传统方法下的结果进行了比较,实验结果表明新方法是有效的。 相似文献
2.
改进的径向基函数神经网络预测模型 总被引:1,自引:0,他引:1
在提高网络传输性能的研究中,径向基函数神经网络(RBF网络)的基函数个数、中心及宽度的确定一直是难解决的问题,为提高RBF网络泛化能力是当前一个重要的研究问题.分析了传统RBF网络工作原理及不足,提出了改进.采用梯度下降法训练径向基函数中心和宽度,提高网络泛化性能.改进最优停止训练算法,使算法效率提高,且避免过拟合现象,最终使RBF网络获得更优的泛化能力.用改进的RBF网络对iris及wine数据集建立预测模型,进行仿真.结果表明,梯度下降方法训练出更优的基函数参数,改进的最优停止训练方法缩短了训练时间、提高预测精度,网络泛化能力有明显提高. 相似文献
3.
使用最大绝对误差算法(MAEA)优选径向基概率神经网络(RBPNN)隐中心矢量,将MAEA与求解RBPNN最优核函数控制参数的微遗传算法(μGA)相结合(MAE-μGA)来共同实现RBPNN的全结构优化.实验结果显示,对比其他几种算法,MAE-μGA优化后的RBPNN结构最简,而且在推广能力方面略好于其他几种优化方法.另外,MAE-μGA对径向基函数网络也有很好的适用性. 相似文献
4.
5.
基于遗传算法的前向神经网络结构优化 总被引:2,自引:0,他引:2
对近几年应用遗传算法(Genetic Algorithm,GA)优化设计前向神经网络结构的研究进行了评述。指出了神经网络结构优化设计的重要性和目前各种方法存在的不足。介绍了神经网络结构设计原理和应用GA优化设计神经网络应着重考虑的两个问题:即结构表达策略和适应度函数设计。分别对近来应用GA优化设计多层感知器、径向基函数神经网络和径向基概率神经网络结构的研究进行了细致介绍和分析。指出了目前研究工作的不足和未来研究工作的发展方向。 相似文献
6.
将基于遗传算法(Genetic algorithm,GA)用于优化径向基函数(Radial Basis Function,RBF)神经网络的输入变量,以提高RBF神经网络的定量分析重叠的同步荧光光谱的能力。本文提出的基于GA输入变量选择的RBF神经网络可作为一种消除光谱干扰的有效工具。光谱对应的有关数据可作为RBF神经网的输入变量,这些多元变量使得神经网络在训练过程中产生"过拟合"现象,降低了定量分析的准确度。用GA优化RBF神经网的输入变量,既简化了神经网络的结构又提高了神经网络的学习能力。通过分析模拟数据和实验数据的计算结果,该方法用于提高RBF人工神经网络网的学习能力可行,且有效。 相似文献
7.
电力负荷精确预测是实现电力系统经济调度重要依据.考虑径向基函数神经网络(RBF-NN)对时间序列所具有的良好拟合及泛化能力,以RBF-NN为研究模型进行电力负荷预测.利用K-means算法对负荷数据进行预处理,引入粒子群优化(PSO)算法对RBF-NN的参数进行优化,以克服参数不确定、梯度下降、局部最优等问题对其模型预... 相似文献
8.
9.
岩性识别是测井数据解释中最关键的一环,但传统的岩性识别方法解释效率慢,精度低,受人为因素影响大。为此,提出一种遗传优化径向基概率神经网络(RBPNN)的岩性识别方法。该方法融合概率神经网络(PNN)和径向基函数神经网络(RBFNN)的优势来构造RBPNN,采用遗传算法搜索使得RBPNN训练法误差最小的最优隐中心矢量和相匹配的核函数控制参数,优化网络结构,提高收敛速度与精度,形成全结构遗传优化的RBPNN模型。实例应用表明,基于遗传优化RBPNN的岩性识别能够达到工程实际应用的规范标准,且是可行有效的,能够为油田地质勘探领域的岩性识别提供科学的理论支持与依靠。 相似文献
10.
11.
12.
13.
A probabilistic radial basis function network (P-RBFN)is presented for face recognition. Each P-RBFN isonly responsible for the recognition of one class. To a given face pattern to be identified, the probability of the givenface pattern belonging to every class is calculated by corresponding P-RBFN and the final recognition result is the fu-sion of all P-RBFN‘s outputs. This method combines the statistic theory and neural network technology and can easi-ly be applied in distributed mode. Experiments are implemented on ORL, and an error rate 4% has been got. Com-parison between P-RBFN and other methodologies such as Eigenface, SOM CN and HMM has been done and the advantages of the P-RBFN are demonstrated. 相似文献
14.
15.
免疫遗传算法除了具有简单遗传算法的全局寻优能力外,还具有免疫记忆、免疫调节及多样性保持功能。梯度下降算法训练神经网络收敛速度慢,容易陷入局部最优,且受初始值的影响较大。本文综合两种方法的优点,提出一种用免疫遗传算法结合梯度下降算法的组合训练方法,用于RBF网的训练,并通过实验证明所提出的组合算法比简单遗传算法结合梯度下降组合算法的速度更快并且最终误差更小。 相似文献
16.
17.
18.
径向基概率神经网络的一种自组织学习算法 总被引:2,自引:0,他引:2
介绍了径向基概率神经网络 (RBPNN)的一种自组织学习算法 ,该算法把径向基概率神经网络的结构原理与自组织聚类算法相结合 ,不仅能够完成对训练样本的聚类分析 ,标识出训练样本的类别属性 ,而且能够自动完成基于该训练样本集的径向基概率神经网络的训练过程 .本算法用于对 IRIS三种花型识别在训练阶段达到 97.33%的识别效果 ,而在推广能力方面 ,由本文算法得到的 RBPNN优于有标识的训练样本的 RBFNN 相似文献