首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为满足多种超高精度装备系统应用需求,基于新型高阶温度曲率补偿技术设计了一种新型低温漂带隙基准源。该电路在传统Brokaw带隙基准源基础上,引入新型的高阶温度曲率补偿电路,在高温段和低温段分别采用相应高阶补偿技术,补偿带隙基准源的高阶温度系数,使该新型低温漂带隙基准源具有极低的电压温度系数,并获得更高精度的基准电压。该电路由基准电压产生电路、高阶温度曲率补偿电路和反馈电路组成。该电路基于40 V特色双极工艺进行电路、版图设计、仿真验证和流片。仿真结果显示,在-55~125℃,输出基准电压精度为0.009 7%,温度系数为9.8×10-7/℃。实测精度为0.010 6%,温度系数为1.04×10-6/℃,可为24 bit模数转换器(ADC)提供高精度基准电压。  相似文献   

2.
在传统带隙基准电路的基础上,设计了一种带分段曲率补偿的带隙基准电压源。利用亚阈值区MOS管的漏电流与栅-源电压呈指数关系而产生的非线性补偿电流,分别对温度特性曲线的低温段和高温段进行补偿。该电路采用0.18 μm 标准CMOS工艺进行设计,仿真结果表明,输出基准电压为600 mV,在-40 ℃~125 ℃温度范围内的温度系数为9.4×10-7/℃。  相似文献   

3.
《电子与封装》2017,(3):22-25
在对传统带隙基准电压源进行理论分析的基础上,结合当前IC设计中对基准电压源低温漂、高电源抑制比的要求,设计了一种超低温漂的带隙基准电压源电路。该电路带有启动电路和高阶温度补偿电路。仿真结果表明,在-55~125℃的温度范围内获得了1.65×10-6/℃的温漂系数,低频时的电源抑制比达到-62 d B。  相似文献   

4.
周前能  徐海峰  李红娟  万天才 《微电子学》2018,48(6):765-768, 773
基于SMIC 0.18 μm CMOS工艺,设计了一种高阶温度补偿的带隙基准电压源。采用源极、漏极与栅极短接的PMOS管替代传统基准电压源中的PNP管,增加了高温区域曲率补偿电路和低温区域温度分段补偿电路。该带隙基准电压源获得了低温漂的性能。仿真结果表明,在-40 ℃~125 ℃温度范围内,该带隙基准电压源的温度系数达到1.997×10-6/℃,在频率为1 Hz、10 Hz、100 Hz、1 kHz、100 kHz时,分别获得了-77.84 dB、-77.84 dB、-77.83 dB、-77.42 dB、-48.05 dB的电源抑制比。  相似文献   

5.
尹勇生  易昕  邓红辉 《微电子学》2017,47(6):774-778
根据带隙基准电压源工作原理,设计了一种带2阶温度补偿的负反馈箝位CMOS基准电压源。不同于带放大电路的带隙基准电压源,该基准电压源不会受到失调的影响,采用的负反馈箝位技术使电路输出更稳定。加入了高阶补偿电路,改善了带隙基准电压源的温漂特性。电路输出阻抗的增大有效提高了电源抑制比。基于0.18 μm CMOS 工艺,采用Cadence Spectre软件对该电路进行了仿真,电源电压为2 V,在-40 ℃~110 ℃温度范围内温度系数为4.199 ×10-6/℃,输出基准电压为1.308 V,低频下电源抑制比为78.66 dB,功耗为120 μW,总输出噪声为0.12 mV/Hz。  相似文献   

6.
张华拓  张国俊 《微电子学》2016,46(3):311-314
设计了一种高低温的高阶曲率补偿带隙基准源。利用VBE的负温度系数特性,分别在高温和低温时使双极型晶体管(BJT)导通,通过BJT的集电极电流产生与温度成指数关系的电压,对基准电压进行补偿,达到高阶补偿的效果。同时,带隙基准电压源采用调节电阻以及NPN和PNP串联的形式,可产生2.3 V的基准电压。电路基于CSMC 2 μm双极工艺设计,采用Hspice进行仿真验证。仿真结果表明,在-55 ℃~125 ℃温度范围内,温度系数达到7.5×10-6/℃。  相似文献   

7.
张龙  冯全源  王丹 《微电子学》2015,45(2):221-224
基于OKI 0.5 μm BCD工艺,设计了一种带曲率补偿的低温漂带隙基准源。采用Brokaw带隙基准核心结构,引入一个高阶效应的电流,对基准进行补偿。结合基准核心电路产生的无温度系数电压,利用简单的电路实现基准电流源的产生。仿真结果表明,在4.5 V供电电压下,-40 ℃~150 ℃温度范围内,基准电压的波动范围为1.1755~1.17625 V,温漂为3.9 ×10-6/℃,基准电流为3.635 μA,输出基准电流波动仅为2.2 nA,精度较高,低频时电路电源抑制比为-76 dB。  相似文献   

8.
设计了一种曲率补偿低温漂带隙基准电压源。采用放大器钳位的传统实现方式,在电路中加入两种不同的分段曲率补偿电路,低温阶段,设计节点电流相减产生一段负温度系数补偿电流,高温阶段,控制晶体三极管导通产生一段正温度系数补偿电流,实现了对基准电压曲率补偿,同时采用共源共栅结构以提高电路的电源抑制比。在0.18μm的TSMC工艺下,使用Cadence Spectre对电路进行仿真,仿真结果表明,在3.3 V的电源电压下,基准输出电压为1.241 V,在–40~+125℃范围内,基准电压的温度系数为3.02×10–6/℃,低频时电源抑制比(PSRR)低于–57 d B。  相似文献   

9.
针对传统带隙基准源无法补偿高阶温度项导致温度系数较差的问题,提出了一种高阶曲率补偿电路。电路利用VBE线性补偿原理,使用特定的电路结构产生与双极型晶体管基极-发射极电压开口曲率相反方向的补偿电压,达到降低基准电压高阶温度项的目的。电路基于SMIC 0.18μm工艺进行流片验证,测试结果表明,温度由-40℃变化到125℃时,使用曲率补偿后带隙基准电压的温度系数由14.3×10-6/℃降低到了3.18×10-6/℃。  相似文献   

10.
根据带隙基准电压源理论,在传统CMOS带隙电压源电路结构的基础上,采用曲率补偿技术,对一阶温度补偿电路进行高阶补偿,获得了一种结构简单,电源抑制比和温度系数等性能都较好的带隙电压基准源.该电路采用CSMC 0.5 μm标准CMOS工艺实现,用Spectre进行仿真.结果表明,在3.3 V电源电压下,在-30 ℃~125 ℃范围内,温度系数为3.2×10-6 /℃;在27 ℃下,10 Hz时电源抑制比(PSRR)高达118 dB,1 kHz时(PSRR)达到86 dB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号