首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
随着社会的不断发展和进步,食品安全、环境保护、生物反恐、临床检验等领域对快速、高灵敏和高选择性检测样品的传感器件的需求不断增加。电化学传感器可实现快速、灵敏、简便、低成本和在线检测,而纳米材料的电化学信号检测放大作用为提高电化学传感器性能提供了极大动力。二硫化钼(MoS2)因其独特的带隙和结构以及优异的性能而被广泛应用于多个领域,是目前研究人员讨论热度最高的纳米材料之一。首先详细总结了二硫化钼的“自上而下”和“自下而上”两大类制备方法,接着重点总结了二硫化钼及其复合材料在生物分子、药物分子以及环境污染物的电化学传感器构建方面的应用研究,最后对基于二硫化钼及复合材料在电化学传感方面所面临的机遇和挑战进行了讨论。  相似文献   

2.
刘艳  赵玉军 《广东化工》2016,(19):99-101
碳纳米材料以其优异的导电特性和机械特性及极佳的生物相容性而引起研究者的极大兴趣,在电化学生物传感器的开发和研究中极具应用价值。碳纳米材料在电化学生物传感器方面的应用主要是将碳纳米材料作为传感器界面的修饰材料、生物分子的固载基质以及信号标记物等。文章综述了碳纳米材料在电化学生物传感器中的应用,并展望了未来碳纳米材料的研究方向。  相似文献   

3.
现代工业化快速发展,重金属等环境污染严重影响公众健康和生态系统安全。基于MOFs及其复合材料的电化学传感系统是重金属污染物分析检测领域的研究热点。综述了基于MOFs及其复合材料的电化学传感器的构建及其在重金属离子检测中的应用研究进展,简要概述了MOFs材料的组成、结构、分类命名、制备技术、电化学传感优势性能等;探讨了MOFs/碳纳米材料、MOFs/金属纳米材料和MOFs/导电聚合物复合材料应用于电化学传感器的优势特性;详细讨论了MOFs基电化学传感器在Pb2+、Hg2+和Gd2+等重金属离子检测方面的应用研究进展;对MOFs基电化学传感器在重金属离子检测应用中的优势及存在的问题进行了分析,并对未来研究发展趋势进行了展望。  相似文献   

4.
水滑石纳米材料特性及其在电化学生物传感器方面的应用   总被引:1,自引:0,他引:1  
阐述了水滑石纳米材料结构和性能之间的关系及近年来水滑石纳米材料在电化学生物传感器方面应用的最新进展。重点介绍了水滑石纳米材料在吸附生物酶制备电化学传感器、水滑石纳米片固定生物酶制备电化学传感器、水滑石纳米片固定其它活性组分制备电化学传感器、水滑石自构筑电化学传感器等方面的应用。着重对水滑石纳米材料制备电化学传感器的机理和制备方法进行了系统概述。提出了水滑石纳米材料构筑电化学生物传感器应用研究的发展趋势:对水滑石纳米材料进行多层、多组分、微型化和阵列化等多样化设计,指出高选择性和高灵敏度检测是未来新型电化学生物传感器应用研究的主要发展方向。  相似文献   

5.
《化学试剂》2021,43(9):1171-1179
黑磷是一种新型的二维材料,具有独特的蜂窝褶皱结构、良好的生物相容性、较高的载流子迁移率以及可调的带隙,在传感中展现了巨大的潜力。但单独的黑磷在空气中易被氧化,这限制了其应用。黑磷纳米复合材料的构建不仅有利于提升黑磷稳定性,而且有利于增强材料传感性能。该文综述了黑磷复合材料的制备及其在传感中的研究进展。首先介绍几类黑磷复合材料的制备方法,包括黑磷/金属氧化物、黑磷/金属硫化物、黑磷/单层材料、黑磷/金属纳米粒子和黑磷/碳等复合材料。然后,介绍黑磷复合材料在电化学传感和气敏传感的研究进展。最后,对黑磷复合材料在传感领域的发展与面临的挑战进行了展望。  相似文献   

6.
黑磷作为一种新型的单元素直接带隙半导体,因其独特的二维结构展现出诸多优异特性,在光电、生物、传感、信息等领域具有很大的应用潜力。近年来,针对黑磷的制备和应用,发展出许多新方法和新技术,例如:通过液相超声/剪切、高能球磨、电化学剥离和等离子体辅助剥离等技术实现了二维黑磷的高效制备;发展了系列物理、化学方法对二维黑磷进行表面修饰,抑制其与水、氧接触,提高了二维黑磷的稳定性并提升了光电等物理性能;借助构建异质结构、掺杂等方式改变黑磷表面电子态密度、增加活性位点,提高了二维黑磷材料的催化活性。从二维黑磷的制备、表面功能化与光电催化三方面出发,综述目前的研究现状和未来可能的发展方向。  相似文献   

7.
电化学生物传感器是一种利用生物体对特定物质进行选择性识别而开发出的新型化学传感器,它的设计巧妙、构型新颖、用途多样。近年来,为了提高传感器的灵敏度,增加其检测速度,使传感器的稳定性提高并缩小体积,基于纳米材料开发的电化学生物传感器成为分析领域的热点。本文着重介绍纳米材料在电化学生物传感器上的研究与应用。  相似文献   

8.
多金属氧酸盐(简称多酸,POMs)具有结构和组成多样、性能独特的优点,在电化学生物传感器领域被认为是一类很有前景的阴离子材料。将POMs与碳基材料、贵金属和金属有机框架等纳米材料制备成多酸复合物,可改善其导电能力和比表面积低等缺陷,并增强其电催化性能,使之在电化学生物传感器领域应用范围扩大。本文综述了近五年多酸复合物的电化学生物传感器的类型与制备方法,以及在食品分析领域中的研究进展,并讨论了其未来挑战和发展前景。  相似文献   

9.
古宗利  赵继宽  刘树峰 《山东化工》2022,(16):170-173+176
自近30年前发现脱氧核酶以来,脱氧核酶已广泛应用于生物传感领域。电化学法、荧光、比色法、电化学发光、化学发光、光电化学等检测方法在基于脱氧核酶的生物传感器中广泛应用于生物样品方面的检测。主要讨论了现有的基于脱氧核酶的生物传感器的几种常见检测方法在检测生物样品方面的实际应用,并且讨论了几种检测方法的优缺点,并指出了现有研究的不足之处。  相似文献   

10.
脱氧核酶是通过体外筛选得到的一种具有酶活性的功能核酸。其中,具有RNA切割功能的脱氧核酶由于具有特异性强、可编程性高及易于合成修饰的特性,已在生物传感领域得到了广泛的发展,但易受核酸酶降解、胞内传输效率低等问题限制了其在体内的应用。纳米材料尺寸小、比表面积大及生物相容性好,在生物领域展现出了出色的应用前景,RNA切割型脱氧核酶与纳米材料的结合为解决上述问题提供了新思路。综述了基于RNA切割型脱氧核酶功能化纳米材料的荧光生物传感的研究进展,首先介绍了RNA切割型脱氧核酶功能化纳米材料的常见功能化策略,随后详细讨论了基于RNA切割型脱氧核酶功能化纳米材料的荧光传感器在体内和体外检测重要生物分子的最新应用,最后就此类传感器的开发所面临的挑战和未来发展方向进行了展望。  相似文献   

11.
The specificity, simplicity, and inherent miniaturization afforded by advances in modern electronics have allowed electrochemical sensors to rival the most advanced optical protocols. One major obstacle in implementing electrochemistry for studying biomolecular reaction is its inadequate sensitivity. Recent reports however showed unprecedented sensitivities for biomolecular recognition using enhanced electronic amplification provided by new classes of electrode materials (e.g. carbon nanotubes, metal nanoparticles, and quantum dots). Biosensor technology is one area where recent advances in nanomaterials are pushing the technological limits of electrochemical sensitivities, thus allowing for the development of new sensor chemistries and devices. This work focuses on our recent work, based on metal-enhanced electrochemical detection, and those of others in combining advanced nanomaterials with electrochemistry for the development of smart sensors for proteins, nucleic acids, drugs and cancer cells.  相似文献   

12.
Label-free biosensors offer accurate sensing capabilities due to the reliable quantification of biological and biochemical processes. These devices function by establishing a dynamic interaction of analyte and receptor molecules and convert this interaction into a measurable signal through a transducer. In recent decades, label-free biosensors have attracted attention in biomedical applications due to the ease of linking nanomaterials with bioreceptor molecules. In this review, recent advances in sensitivity, specificity, and sensing mechanism related to label-free biosensors of metallic nanoparticles of gold, silver, aluminium, copper, and zinc oxide are presented. Selected sensing methods based on fluorescence, surface plasmon resonance, surface-enhanced Raman scattering, metal-enhanced fluorescence, and electrochemical sensors are discussed. New measurement techniques and rapid progress of label-free biosensors are going to play a vital role in the real-time detection of biomarkers in clinical samples, such as blood plasma, serum, and urine, as well as in targeted drug delivery. Future trends of these label-free biosensing mechanisms and their development are also discussed.  相似文献   

13.
In recent times, food safety has become a topic of debate as the foodborne diseases triggered by chemical and biological contaminants affect human health and the food industry’s profits. Though conventional analytical instrumentation-based food sensors are available, the consumers did not appreciate them because of the drawbacks of complexity, greater number of analysis steps, expensive enzymes, and lack of portability. Hence, designing easy-to-use tests for the rapid analysis of food contaminants has become essential in the food industry. Under this context, electrochemical biosensors have received attention among researchers as they bear the advantages of operational simplicity, portability, stability, easy miniaturization, and low cost. Two-dimensional (2D) nanomaterials have a larger surface area to volume compared to other dimensional nanomaterials. Hence, researchers nowadays are inclined to develop 2D nanomaterials-based electrochemical biosensors to significantly improve the sensor’s sensitivity, selectivity, and reproducibility while measuring the food toxicants. In the present review, we compile the contribution of 2D nanomaterials in electrochemical biosensors to test the food toxicants and discuss the future directions in the field. Further, we describe the types of food toxicity, methodologies quantifying food analytes, how the electrochemical food sensor works, and the general biomedical properties of 2D nanomaterials.  相似文献   

14.
15.
In order to develop new, high technology devices for a variety of applications, researchers would like to better control the structure and function of micro/nanomaterials through an understanding of the role of size, shape, architecture, composition, hybridization, molecular engineering, assembly, and microstructure. However, researchers continue to face great challenges in the construction of well-defined micro/nanomaterials with diverse morphologies. At the same time, the research interface where micro/nanomaterials meet electrochemistry, analytical chemistry, biomedicine, and other fields provides rich opportunities to reveal new chemical, physical, and biological properties of micro/nanomaterials and to uncover many new functions and applications of these materials. In this Account, we describe our recent progress in the construction of novel inorganic and polymer nanostructures formed through different simple strategies. Our synthetic strategies include wet-chemical and electrochemical methods for the controlled production of inorganic and polymer nanomaterials with well-defined morphologies. These methods are both facile and reliable, allowing us to produce high-quality micro/nanostructures, such as nanoplates, micro/nanoflowers, monodisperse micro/nanoparticles, nanowires, nanobelts, and polyhedron and even diverse hybrid structures. We implemented a series of approaches to address the challenges in the preparation of new functional micro/nanomaterials for a variety of important applications This Account also highlights new or enhanced applications of certain micro/nanomaterials in sensing applications. We singled out analytical techniques that take advantage of particular properties of micro/nanomaterials. Then by rationally tailoring experimental parameters, we readily and selectively obtained different types of micro/nanomaterials with novel morphologies with high performance in applications such as electrochemical sensors, electrochemiluminescent sensors, gene delivery agents, and fuel cell catalysts. We expect that micro/nanomaterials with unique structural characteristics, properties, and functions will attract increasing research interest and will lead to new opportunities in various fields of research.  相似文献   

16.
张浩春  吕佳  张冰  高文超  李兴  常宏宏  魏文珑 《化工进展》2016,35(12):3991-4000
肿瘤是严重威胁人类健康的疾病之一,降低恶性肿瘤死亡率的主要途径是早期诊断和治疗,肿瘤标志物在肿瘤早期诊断中具有重要的临床应用价值。随着纳米技术的迅猛发展,基于纳米材料构建的电化学传感器可实现对肿瘤标志物的检测,且具有检测灵敏度高、选择性好等优点。本文重点综述了碳纳米材料、贵金属纳米材料、氧化物纳米材料、量子点纳米材料等新型纳米材料电化学免疫传感器的构建原理及其在甲胎蛋白、前列腺抗原、癌胚抗原等肿瘤标志物检测中的应用,分析总结了基于不同纳米材料构建的电化学传感器在各种肿瘤标志物检测中的优缺点,并展望了电化学传感器的发展趋势,提出未来电化学免疫传感器应以微型化、高通量化和商业化为研究重点,并实现对肿瘤标志物的快速、在线、实时检测。  相似文献   

17.
Over the last years, different nanomaterials have been investigated to design highly selective and sensitive sensors, reaching nano/picomolar concentrations of biomolecules, which is crucial for medical sciences and the healthcare industry in order to assess physiological and metabolic parameters. The discovery of graphene (G) has unexpectedly impulsed research on developing cost-effective electrode materials owed to its unique physical and chemical properties, including high specific surface area, elevated carrier mobility, exceptional electrical and thermal conductivity, strong stiffness and strength combined with flexibility and optical transparency. G and its derivatives, including graphene oxide (GO) and reduced graphene oxide (rGO), are becoming an important class of nanomaterials in the area of optical and electrochemical sensors. The presence of oxygenated functional groups makes GO nanosheets amphiphilic, facilitating chemical functionalization. G-based nanomaterials can be easily combined with different types of inorganic nanoparticles, including metals and metal oxides, quantum dots, organic polymers, and biomolecules, to yield a wide range of nanocomposites with enhanced sensitivity for sensor applications. This review provides an overview of recent research on G-based nanocomposites for the detection of bioactive compounds, providing insights on the unique advantages offered by G and its derivatives. Their synthesis process, functionalization routes, and main properties are summarized, and the main challenges are also discussed. The antioxidants selected for this review are melatonin, gallic acid, tannic acid, resveratrol, oleuropein, hydroxytyrosol, tocopherol, ascorbic acid, and curcumin. They were chosen owed to their beneficial properties for human health, including antibiotic, antiviral, cardiovascular protector, anticancer, anti-inflammatory, cytoprotective, neuroprotective, antiageing, antidegenerative, and antiallergic capacity. The sensitivity and selectivity of G-based electrochemical and fluorescent sensors are also examined. Finally, the future outlook for the development of G-based sensors for this type of biocompounds is outlined.  相似文献   

18.
Liver fibrosis is a process of excessive accumulation of extracellular matrix caused by liver injury. Liver fibrosis can progress to cirrhosis or even liver cancer without proper intervention. Until now, no effective therapeutic drugs have been clinically approved for treating liver fibrosis. Hence, the development of safe and effective antifibrotic drugs is particularly important. As a representative biomaterial, peptides have been investigated as key components for constructing antifibrotic nanomaterials given their advantages of biological origination, synthetic availability, and good biocompatibility. Peptides serve as multifunctional motifs in antifibrotic nanomaterials, such as liver-targeting molecules, antifibrotic molecules, and self-assembling building blocks for the formation of the nanomaterials. In this review, we focus on peptide-based nanoarchitectonics for treating liver fibrosis, including nanomaterials modified with liver-targeting peptides, nanomaterials for the efficient delivery of antifibrotic peptides, and self-assembled peptide nanomaterials for the delivery of antifibrotic drugs. The design rules of these peptide-based nanomaterials are described. The antifibrotic mechanisms and effects of these peptide-based nanomaterials in treating liver fibrosis and related diseases are highlighted. The challenges and future perspectives of using peptide-based nanoarchitectonics for the treatment of liver fibrosis are discussed. These results are expected to accelerate the rational design and clinical translation of antifibrotic nanomaterials.  相似文献   

19.
The potential applications of nanomaterials used in nanomedicine as ingredients in drug delivery systems and in other products continue to expand. When nanomaterials are introduced into physiological environments and driven by energetics, they readily associate proteins forming a protein corona (PC) on their surface. This PC could result in an alteration of the nanomatcrial's surface characteristics, affecting their interaction with cells due to conformational changes in adsorbed protein molecules. However, our current understanding of nanobiological interactions is still very limited. Utilizing a liquid chromatography-mass spectroscopy/mass spectroscopy technology and a Cytoscape plugin (ClueGO) approach, we examined the composition of the PC for a set of zinc oxide nanoparticles (ZnONP) from cell culture media typically and further analyzed the biological interaction of identified proteins, respectively. In total, 36 and 33 common proteins were investigated as being bound to ZnONP at 5 min and 60 min, respectively. These proteins were further analyzed with ClueGO, a Cytoscape plugin, which provided gene ontology and the biological interaction processes of identified proteins. Proteins bound to the surface of nanoparticles that may modify the structure, therefore the function of the adsorbed protein could be consequently affect the complicated biological processes.  相似文献   

20.
Gao C  Guo Z  Liu JH  Huang XJ 《Nanoscale》2012,4(6):1948-1963
Since the discovery of carbon nanotubes (CNTs), they have drawn considerable research attention and have shown great potential application in many fields due to their unique structural, mechanical, and electronic properties. However, their native insolubility severely holds back the process of application. In order to overcome this disadvantage and broaden the scope of their application, chemical functionalization of CNTs has attracted great interest over the past several decades and produced various novel hybrid materials with specific applications. Notably, the rapid development of functionalized CNTs used as electrochemical sensors has been successfully witnessed. In this featured article, the recent progress of electrochemical sensors based on functionalized CNTs is discussed and classified according to modifiers covering organic (oxygen functional groups, small organic molecules, polymers, DNA, protein, etc.), inorganic (metal nanoparticles, metal oxide, etc.) and organic-inorganic hybrids. By employing some representative examples, it will be demonstrated that functionalized CNTs as templates, carriers, immobilizers and transducers are promising for the construction of electrochemical sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号