首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 156 毫秒
1.
燃气电厂利用稳定、清洁的化石能源发电,在“双碳”背景下发电过程产生的低浓度CO2的捕集和资源化利用,对于实现碳中和至关重要。针对低浓度CO2捕集难度大、脱附费用高的问题,利用CO2吸收液同步培养微藻产油提供了一种实现低浓度CO2捕集与资源化利用于一体的新途径。具有高CO2捕集能力和同时快速培养微藻能力的吸收液是溶液设计和配制的决定性因素。本文总结了现有吸收液的应用现状,梳理出复合吸收液耦合微藻营养调控的碳捕集发展前景,其中吸收液的碱度和盐度对微藻同化CO2具有显著影响。讨论了在不同温度和光照的工艺条件对微藻生物转化CO2的影响,阐述了CO2气体以微孔鼓泡和气升导流的方式通入反应器对CO2捕集和微藻生长的不同效果。从促进微藻吸收CO2同步产油的角度,介绍了藻种诱变驯化和基因改造以提升环境适应性同时增强脂质生产的研究进展,最后通过经济分析展望了规模化应用吸收-微藻法的经济可...  相似文献   

2.
全球CO2的排放量不断升高,导致气候问题频发。“双碳”目标下,如何高效、低成本地捕集燃煤电厂烟气CO2已经成为迫在眉睫的问题。传统的化学吸收法由于能耗高、成本高、溶剂易挥发等问题严重制约了其发展,而膜法碳捕集因为其操作简单、能耗低、环境污染小等优势被认为是最有前景的捕集方式。本文以PI中空纤维膜为分离膜,建立和求解了气体分离膜模型。并以燃煤电厂烟气CO2为捕集目标,利用多岛遗传算法求解了膜分离捕集CO2工艺的不同配置,并优化了分离过程中的关键参数(膜面积、操作压力)。结果显示:在二级膜分离工艺中,二级一段膜分离工艺的第一级膜和第二级膜操作压力分别为5.8 bar和7.1 bar,第一级膜和第二级膜的面积分别为448000 m2和180000 m2时,单位捕集成本为27.36 USD/t CO2。与二级二段膜分离以及其他几种传统的CO2捕集方法(MEA法、相变吸收法)相比,二级一段膜分离捕集CO2的捕集成本和能耗均最小。本研究将为CO2捕集实现低能耗和低成本化提供依据。  相似文献   

3.
针对低浓度氨水捕集CO2速率慢、再生能耗高的问题,利用AspenPlus软件模拟高浓度氨水(质量分数为16%~22%)为吸收剂的燃煤电厂CO2捕集工艺系统,对比高浓度与低浓度氨水捕集CO2工艺的能耗特性与氨逃逸速率,揭示高浓度氨水脱碳过程中氨逃逸和能耗与氨水浓度、碳负载、解吸塔富液入口温度之间的关联特性。研究表明:再生过程中存在氨逃逸浓度转变的临界再生温度和贫液碳负载的限制,当氨水质量分数为20%时,再生温度不宜高于107℃,贫液碳负载率不宜低于0.25;与低浓度氨水(质量分数为4%~8%)脱碳相比,高浓度氨水脱碳工艺的CO2再生能耗可降低26.2%~32.2%,考虑氨回收能耗后的总体能耗仍可降低21.6%~25%,为低能耗氨法碳捕集工艺的开发提供了指导。  相似文献   

4.
为了解决醇胺法燃烧后捕集二氧化碳再生能耗过高的问题,研究了一种向胺溶液中添加金属离子以降低其CO2解吸能耗的方法,称之为金属离子络合物热缓冲自热利用技术。以广泛商业化应用的单乙醇胺(MEA)溶液为研究载体,并在MEA溶液中分别添加金属离子铜或镍, 通过建立含有金属离子的MEA捕集CO2体系的化学反应模型,解释金属离子热缓冲剂效应的内在机理。机理显示在MEA-金属离子-CO2-H2O体系中,金属-MEA络合物作为一种有效的反应热缓冲剂,将有机胺吸收CO2过程中释放的反应热(放热反应)存储于金属络合物的解离键能中(吸热反应),在CO2高温解吸中通过其络合放热反应将储存的能量释放出来用于CO2解吸,形成自热再生低能耗CO2捕集技术,从而降低了MEA再生的能耗。本文进行了综合的实验测定来评价金属离子对MEA溶液捕集CO2过程的性能提升影响,包括CO2反应热、解吸速率、吸收-解吸循环负载、汽液平衡溶解度等。实验结果表明铜离子或镍离子作为添加剂,能增加MEA的CO2平衡循环负载14%~20%或7%~10%,同时能够降低MEA的CO2反应热值6.6%~24%或6.0%~20%。  相似文献   

5.
碳捕集及资源化利用对缓解全球变暖、冰川融化等环境问题具有重要意义,是实现碳中和的有效途径之一。传统的化学吸收法捕集CO2能耗高,而微藻生物固定CO2时,由于CO2在培养基中溶解度低,导致CO2逃逸,造成固碳效率低及CO2二次排放。化学吸收与微藻固碳耦合系统具有潜在的降低再生能耗及提升一体化CO2资源化利用优势。采用氨水作为化学吸收剂,充分吸收CO2后生成的NH4HCO3部分替代传统微藻培养过程中的氮源NaNO3,为降低高浓度NH4+-N对螺旋藻的毒性,进一步降低耦合系统的氮源成本,采用分批补加NH4HCO3的形式优化氮源组成。结果表明,分批补加NH4HCO3可在不影响螺旋藻生长的情况下,降低NaNO3总需求量,促进脂质...  相似文献   

6.
黄宏  杨思宇 《化工学报》2017,68(10):3860-3869
传统的煤制甲醇过程所需合成气的氢碳比为2.1左右,而煤气化粗合成气氢碳比仅为0.7左右,因此需要将部分合成气进行变换来调节氢碳比。然而,变换气与未变换气混合后使得CO2浓度降低,从而导致CO2捕集能耗增加。提出了一种低能耗捕集CO2煤基甲醇和电力联产过程。新联产过程中部分粗合成气首先经过变换,将CO转变为H2和CO2,CO2浓度提高,在此时进行CO2捕集可实现捕集能耗的降低。经CO2捕集后,得到富H2气体,富H2气体分流后与另一部分煤气化粗合成气混合调节甲醇合成的氢碳比。对新的过程进行了建模、模拟与分析。结果表明相比传统的带CO2捕集的煤制甲醇和IGCC发电过程,新的联产过程的能量节约率可达到16.5%,CO2捕集能耗下降30.3%。  相似文献   

7.
醇胺法捕集CO2技术是一种较成熟的CO2捕集技术,具有吸收速度快、脱除效果好等显著优点,但其操作费用高、解吸能耗大。本文以降低醇胺法捕集烟气中CO2系统再生能耗为出发点,对常规醇胺法捕集CO2工艺统进行了节能优化研究。在常规工艺流程基础上引入压缩式热泵节能技术,并利用Aspen Plus软件建立了基于压缩式热泵技术的CO2捕集工艺流程模型。研究了压缩式热泵与机械蒸汽压缩回收(MVR)热泵、分流解吸、分布式换热、级间冷却4种节能工艺耦合,通过模拟计算与优化,结果说明了最佳节能工艺组合为“解吸塔压缩式热泵+贫液MVR热泵+分流解吸+级间冷却”耦合的CO2捕集工艺流程,当解吸塔顶气体分流比为0.25∶0.75、冷富液分流比为0.05∶0.95、级间冷却器位于吸收塔17块塔板位置、吸收塔输入冷量为-3.0GJ/h时,系统再生能耗最低,为2.533 GJ/tCO2,相比常规有机胺工艺(再生能耗4.204GJ/tCO2)节能率39.748%。  相似文献   

8.
在“碳达峰、碳中和”的双重任务下,CO2捕集已经成为今后工业发展的必然趋势。分别介绍了燃烧前捕集、燃烧后捕集以及富氧燃烧技术,并总结了相关技术还存在的问题。同时,系统地总结了国内外主要的CO2捕集方法,分析了不同捕集方法的优缺点,并针对不同行业提出了合理的捕集方法。其中,重点介绍了溶液吸收法,通过对现有吸收液存在的能耗高、易挥发、毒性大的问题,提出了今后溶液吸收法的主要发展方向,并针对现有吸附法存在的问题提出开发新型低温、低压、低成本的固体吸附材料及相关工艺的研究思路。  相似文献   

9.
吴建猛  郑爽  曾少娟  张香平  杨灿  董海峰 《化工学报》1951,73(10):4268-4284
人口增长与全球工业化的加速发展促使化石能源需求量逐年递增,由此导致大气中二氧化碳(CO2)含量快速上升并引发了全球系列气候问题,“碳达峰·碳中和”背景下的CO2减排刻不容缓。传统工业捕集CO2方法由于能耗高、选择性较差、溶剂损耗大等问题限制了其大规模推广应用,离子液体因其极低挥发性、强的气体亲和性、可调的结构性质等特点在CO2捕集分离领域逐渐显示出独特优势,但离子液体特别是功能化后通常黏度较高或室温呈固态,导致气液传质效果差或无法直接应用于吸收分离过程。负载型离子液体兼具离子液体和多孔材料的共同优势,不仅能提升选择性分离效果,有效避免离子液体直接吸收造成的高黏度,还可拓展离子液体应用范围,具有广阔的发展前景。重点总结了近些年物理和化学负载型离子液体在CO2吸附分离方面的研究现状和进展,并对负载型离子液体捕集分离CO2研究的发展趋势进行了展望。  相似文献   

10.
吴建猛  郑爽  曾少娟  张香平  杨灿  董海峰 《化工学报》2022,73(10):4268-4284
人口增长与全球工业化的加速发展促使化石能源需求量逐年递增,由此导致大气中二氧化碳(CO2)含量快速上升并引发了全球系列气候问题,“碳达峰·碳中和”背景下的CO2减排刻不容缓。传统工业捕集CO2方法由于能耗高、选择性较差、溶剂损耗大等问题限制了其大规模推广应用,离子液体因其极低挥发性、强的气体亲和性、可调的结构性质等特点在CO2捕集分离领域逐渐显示出独特优势,但离子液体特别是功能化后通常黏度较高或室温呈固态,导致气液传质效果差或无法直接应用于吸收分离过程。负载型离子液体兼具离子液体和多孔材料的共同优势,不仅能提升选择性分离效果,有效避免离子液体直接吸收造成的高黏度,还可拓展离子液体应用范围,具有广阔的发展前景。重点总结了近些年物理和化学负载型离子液体在CO2吸附分离方面的研究现状和进展,并对负载型离子液体捕集分离CO2研究的发展趋势进行了展望。  相似文献   

11.
大量的化石燃料燃烧导致温室气体排放增加,全球气候变暖。世界各国以全球协约的方式减排CO2,我国也由此提出“碳达峰·碳中和”目标。CO2捕集以及转化制液体燃料和化学品是双碳目标下行之有效的碳减排措施之一,不仅可以实现CO2的资源化利用,同时也缓解了国家能源安全问题。本文以燃煤电厂烟气CO2捕集和CO2合成甲醇为研究对象,分析了基于四种不同CO2捕集技术的CO2耦合绿氢制甲醇工艺。对四种不同CO2捕集技术的CO2制甲醇工艺进行了严格的稳态建模和模拟,分析和比较了不同CO2捕集技术情景下的CO2制甲醇工艺的技术和经济性能。结果表明,MEA、PCS、DMC和GMS情景的单位甲醇能耗分别是7.81、5.48、5.91和4.66 GJ/ t CH3OH,GMS情景的单位能耗最低,其次是PCS情景,但随着更高效相变吸收剂的开发,PCS情景的单位甲醇产品的能耗将降低至2.29~2.58 GJ/t CH3OH。四种情景的总生产成本分别是4314、4204、4279和4367 CNY/ t CH3OH,PCS情景的成本最低,更具有经济优势。综合分析表明PCS情景的性能表现最好,为可用于燃煤电厂最佳的碳捕集技术,为CO2高效合成燃料化学品提供方向,缓解化石燃料短缺和环境污染问题。  相似文献   

12.
曾成  卢苇  蒙仕达  覃日帅 《化工进展》2022,41(10):5214-5220
分离捕集CO2是实现“双碳”目标的重要途径之一。常规的CO2分离方法普遍能耗较高,若能以余(废)热为动力来分离CO2则可综合利用能源、降低能耗。本文针对高碳排放但却拥有丰富余(废)热资源的燃煤电厂,提出了一种基于热流逸效应的烟气CO2分离系统,并建立了相应的分离过程数学模型和系统性能评价指标。分析表明,CO2的浓度和回收率均随热流逸式气体分离器串联级数的增加而升高,但浓度和回收率达到某一阈值后效果不再明显;典型的1000MW燃煤电厂烟气经该系统中串联的24级分离器处理后,CO2的物质的量分数最高可达98.89%,回收率达72.53%。此外,该系统可梯级利用烟气的余热,?效率为64.8%,单位能耗为0.047GJ/tCO2,与传统CO2分离方法相比具有一定节能潜力。利用热流逸效应分离CO2符合当下净零碳排放的政策导向,为CO2的分离捕集提供了新思路。  相似文献   

13.
大量的化石燃料燃烧导致温室气体排放增加,全球气候变暖。世界各国以全球协约的方式减排CO2,我国也由此提出“碳达峰·碳中和”目标。CO2捕集以及转化制液体燃料和化学品是双碳目标下行之有效的碳减排措施之一,不仅可以实现CO2的资源化利用,同时也缓解了国家能源安全问题。本文以燃煤电厂烟气CO2捕集和CO2合成甲醇为研究对象,分析了基于四种不同CO2捕集技术的CO2耦合绿氢制甲醇工艺。对四种不同CO2捕集技术的CO2制甲醇工艺进行了严格的稳态建模和模拟,分析和比较了不同CO2捕集技术情景下的CO2制甲醇工艺的技术和经济性能。结果表明,MEA、PCS、DMC和GMS情景的单位甲醇能耗分别是7.81、5.48、5.91和4.66 GJ/ t CH3OH,GMS情景的单位能耗最低,其次是PCS情景,但随着更高效相变吸收剂的开发,PCS情景的单位甲醇产品的能耗将降低至2.29~2.58 GJ/t CH3OH。四种情景的总生产成本分别是4314、4204、4279和4367 CNY/ t CH3OH,PCS情景的成本最低,更具有经济优势。综合分析表明PCS情景的性能表现最好,为可用于燃煤电厂最佳的碳捕集技术,为CO2高效合成燃料化学品提供方向,缓解化石燃料短缺和环境污染问题。  相似文献   

14.
田原宇  乔英云  张永宁 《化工进展》2022,41(2):1078-1084
基于对CO2具有“既是亟待减排的温室气体,又是人类生存必不可少的可再生资源”双重性的认知,本文首次提出了碳中和约束下的“污染温室因子禁排、CO2净零排放、调控CH4产生和排放”的温室因子绿色减排体系。文中从两个方面提出绿色减排体系的构建:在国家层面,通过制定相关减排政策体系、进行国家超级工程和行动,为我国实现“30·60双碳目标”提供依据、标准和规范,形成实施绿色碳减排的基石和支撑体系;在微观技术层面,通过全过程控碳排放的CO2绿色减排技术,包括源头上避免高碳排放、过程中控制碳排放、末端强化碳循环与捕集利用(3CU)等。最后指出,依靠能源绿色低碳转型,以节能降耗和生物固碳为抓手,疏堵结合,满足自然界的碳循环平衡需求,高效低成本实现经济社会高质量低碳化发展、生态文明建设与应对气候变化的三赢,将会促进我国2030年前达到峰值和2060年前实现碳中和。  相似文献   

15.
Currently, a large proportion of global fossil fuel emissions originate from large point sources such as power generation or industrial processes. This trend is expected to continue until the year 2030 and beyond. Carbon capture and storage (CCS), a straightforward and effective carbon reduction approach, will play a significant role in reducing emissions from these sources into the future if atmospheric carbon dioxide (CO2) emissions are to be stabilized and global warming limited below a threshold of 2 °C. This review provides an update on the status of large scale integrated CCS technologies using solvent absorption for CO2 capture and provides an insight into the development of new solvents, including advanced amine solvents, amino acid salts, carbonate systems, aqueous ammonia, immiscible liquids and ionic liquids. These proposed new solvents aim to reduce the overall cost CO2 capture by improving the CO2 absorption rate, CO2 capture capacity, thereby reducing equipment size and decreasing the energy required for solvent regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号