首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
为研究波高对冷热双流道板式换热器的影响,对不同紊流状态下正弦人字形换热器进行了三维建模,利用 ANSYS Fluent 软件对冷热流道内换热器的换热和流动特性进行了数值模拟分析,得到了不同湍流强度下换热器内部温度、速度、压力场的分布特性,并分析了典型波纹倾角、波距情况下,不同波高对换热器平均壁面努塞尔系数(Nu)及摩擦因子的影响。结果表明:①雷诺数增加使得换热器内部热交换性能提升,换热死区面积减小,压力增大;②入口流速的增加使得 Nu 随之增大,但也使沿程阻力增加,入口流速 0.4 ~ 0.8 m/s时换热器换热性能良好;③ Nu 随波高呈线性增加趋势,考虑到沉淀结垢及摩擦因子随波高变化,建议波高4 ~ 5 mm 为宜。  相似文献   

2.
利用Fluent软件分别对光管、单头螺旋槽管及双头螺旋槽管传热及管内流动情况进行模拟,得到了湍流状态下管内流场分布云图,并从场协同理论出发,分析了螺旋槽管强化传热机理.仿真结果显示,在低雷诺数条件下,螺旋槽使管内产生较多的二次流,速度在横截面上的分量增加,努塞尔数保持为光管的1.6~2.2倍,换热性能优于光管,并且双头螺旋槽管的换热性能要优于单头螺旋槽管.但随着雷诺数的增加,场协同角逐渐接近90°,努塞尔数增加趋势变缓,换热性能增加量变缓,而且当雷诺数较高时,螺旋槽管的阻力系数急剧上升,换热性能不及光管.  相似文献   

3.
应用标准k-ε湍流方程模型,使用压力修正的SIMPLE算法进行求解,对弓形折流板不同几何结构下换热器壳程的流动和换热性能进行了数值模拟,并对计算结果进行了分析.结果表明:换热器入口速度的增加会使折流板之间的高温区域减少、流动死区面积减少、换热器的有效换热面积增大;随着折流板间距减小,换热器的换热量随之增大,但是换热器的压降却明显增加,折流板换热器压降均随空气入口速度的增加呈递增趋势且会影响综合换热性能;折流板高度的增加对换热量有明显增大的作用,但是折流板增高会使壳程压降升高,从而造成了换热性能指标的下降.  相似文献   

4.
研究幂律流体在螺旋管内的流动换热特性可为石油开采工程中驱油剂的应用提供理论支持.文章通过建立流体流动换热模型,分析了幂律流体在螺旋管内的流动换热特性.结果表明:螺旋管沿程阻力系数和努塞尔数均随曲率值增加而增大.层流工况下,随着雷诺数的增大,沿程阻力系数减小,努塞尔数增大;湍流工况下,在雷诺数一定时,沿程阻力系数和努塞尔...  相似文献   

5.
使用自行设计的测量纳米流体流动与对流换热性能的实验装置,测量了含有不同体积分数纳米石墨的石墨-水纳米流体雷诺数在3 000~6 500范围内的对流换热系数。实验结果表明:石墨纳米颗粒的加入提高了水的对流换热系数;石墨纳米颗粒在水中的体积分数与对流换热系数近似呈线性关系;努塞尔数Nu随着雷诺数的增大近似线性增大;流动状态下的纳米粒子本身的无规则运动和热散射对对流换热系数的提高有显著影响。  相似文献   

6.
换热器作为关键设备,广泛运用于能源高效利用及能量交换等领域.其中,螺旋套管换热器是高效紧凑的流体换热设备,换热能力受流体物性、管材以及结构等因素的影响.内管偏心对螺旋套管环形侧的流动和换热特性具有重要影响.文中通过数值方法模拟了不同偏心程度的螺旋套管,探究对比了五个偏心率对应环形流道的流动阻力及换热特性.研究结果表明:偏心螺旋套管环形侧的努塞尔数(Nu_(a))和摩擦因数(f_(a))随着内管偏心率的增加分别增大和减小.当偏心率从0增加至0.8,偏心螺旋套管环形侧的努塞尔数(Nu_(a))和摩擦因数(f_(a))分别增加9.8%和减小5.1%.此外,以同心直套管环形侧为强化传热技术评价的参照,偏心率为0.8的螺旋套管换热器的环形流道的综合传热性能PEC_(a)为1.39.与同心螺旋结构相比,偏心螺旋套管环形侧的PEC_(a)增加了11.9%.  相似文献   

7.
为了探究超临界二氧化碳(S-CO2)在直通道印刷电路板换热器(PCHE)中换热特性,本文采用数值模拟方法对此问题进行了研究.计算分析了S-CO2在印刷电路板换热器中的换热特性,并对比了在单独改变一侧通道入口温度、工作压力及工质流量时对流换热系数和壁面努塞尔数的变化趋势.研究结果表明:由于工作压力不同,超临界二氧化碳工质存在从类液区向类气区过渡的情况,导致印刷电路板换热器换热通道入口温度或流量变化相同时对流换热系数和壁面努塞尔数呈现出不同的变化趋势.保持超临界二氧化碳工作压力和流量一定时改变冷侧入口温度比改变热侧入口温度对印刷电路板换热器热功率的影响更大;改变热通道的压力或流量要比改变冷通道的压力或流量对PCHE热功率的影响更大.  相似文献   

8.
运用计算流体动力学软件FLUENT,对流动冲击角分别为45°、60°、75°和90°,流体绕流6排87根错排管束下的换热进行三维数值模拟.管束的纵向和横向管间距分别为9.5 mm和11 mm.考查管束的平均换热努赛尔数和模型进出口压降,并与茹卡乌斯卡斯的实验关联式进行对比.当雷诺数为5 000~20 000时,给出4种流动冲击角下管束换热努赛尔数的拟合公式,并对管周向局部换热特点进行细观分析.结果表明:湍流边界层在周向夹角为大约105°时从管壁面分离,此时换热最差;流动冲击角越大,管束的平均换热努赛尔数和模型进出口压降越大;流动冲击角为45°时综合换热性能较好.  相似文献   

9.
应用数值模拟方法对内置扭旋元件的管内旋流特性与传热效果的关联性进行研究,首次提出表征螺旋流径向流动强度的"径流数"概念及表达式,并与表征螺旋流周向流动强度的"旋流数"进行对比,获得径流数,旋流数和努塞尔数随换热管轴向位置及雷诺数变化的对应关系.研究结果表明:旋流数和径流数均与努塞尔数沿换热管轴向呈现良好的匹配关系,变化趋势和极值位置几乎相同,而径流数与努塞尔数的吻合程度更优,说明通过扭旋元件旋流特性的研究在一定程度上可以替代传热特性研究,缩短扭旋元件的研发周期;管内努塞尔数均随着雷诺数的增大而提高,而旋流数及径流数受雷诺数的影响不大,没能反映出雷诺数对传热效果的影响,应对这两个参数进一步改进,扩大其应用范围.  相似文献   

10.
为了提高翅片式换热器的强化传热性能,对不同攻角的纵向涡发生器的翅片区域进行了研究.采用流体仿真软件FLUENT对发生器的翅片区域建立六面体网格模型,对不同攻角的纵向涡发生器的努塞尔数、阻力因子、综合性能分别进行数值分析和对比.结果显示:随着纵向涡发生器的攻角增加,纵向涡翅片的努塞尔数增强的越来越明显,其中纵向涡发生器攻角为45°的翅片努塞尔数最大;同时随着纵向涡发生器的攻角增加,阻力因子也随之增加;带纵向涡发生器的翅片的传热效果强于不带纵向涡发生器的翅片;通过比较综合评价因子,攻角为45°的纵向涡翅片在雷诺数为2000~6000内,综合性能最好.  相似文献   

11.
基于有限容积法建立波纹翅片管换热器流体流动与传热的计算模型,在不同送风速度工况下,分别对6种不同波纹倾角结构换热器内流体的流动及传热进行了数值模拟,分析了流道内的温度场、压力场及速度场的变化规律,得到了换热量、压降以及出口温度随入口风速变化的规律。结果表明,换热量、压降以及出口温度均随波纹倾角的增加而增大;换热量随着送风速度的加快而增加,压降及出口温度随着送风速度的加快而降低;翅片板间流体的流动与传热存在比较明显的不均性,导致换热管背风侧存在明显的传热"死区"。  相似文献   

12.
多孔泡沫金属换热器内流体的流动和传热分析   总被引:1,自引:0,他引:1  
对管间填充多孔泡沫金属的方形管壳式换热器内流体沿管间轴向强制层流的流动和恒热流密度的传热进行了理论研究。结果表明,流体的径向速度分布呈现类似于光管内湍流时近壁处薄层内变化率大,其余大部分区域平坦的特征;流体和泡沫的径向温度分布较为平坦;流体的压力降随泡沫孔数(ppi)增大的增长明显大于时流换热的Nu数随ppi数增大的增长;泡沫的孔隙率越小,流体的压力降越大,对流换热的Nu数也越大。  相似文献   

13.
为了改善普通弓形折流板换热器换热性能,提出了一种新型折流板换热器-球面弓形折流板换热器。建立曲率半径为0.75 D的球面弓形折流板换热器和普通弓形折流板换热器数值分析模型,得到了壳程流体流场分布情况以及壳程压力降和传热系数。结果表明,在相同结构参数和进口流速条件下,球面弓形折流板换热器壳程压力降比普通弓形折流板换热器降低8%~11%,壳程传热系数比普通弓形折流板换热器降低1%~5%。  相似文献   

14.
热管中冷器的传热与阻力特性   总被引:1,自引:0,他引:1  
为了研究重力热管在车辆中冷器上的应用可行性,设计用于冷却高温增压空气的热管中冷器.选用水作为工作介质,在风洞实验台架上进行热管中冷器的传热和阻力性能实验.测试热管中冷器在不同冷侧空气流速、冷﹑热侧空气进口温差、热侧空气流量下的散热量和压力降,比较并分析测试结果.结果表明,热管中冷器具有良好的散热性能,在一定范围内可以满足高增压内燃机的散热要求.将实验结果与理论模型计算值进行比较,结果表明,实验值与理论计算值变化趋势吻合较好.  相似文献   

15.
利用ANSYS参数化建模方法建立了管壳式换热器的参数化模型,在ANSYSFLUENT中对管壳式换热器壳程流体的流动与传热进行了数值模拟计算,得到换热器壳程流体温度场、速度场和压力场;分析了折流板间距及弦高对换热效率和壳程流体压降的影响,对于设计传热效率高、流体阻力小的换热器进行了有益探索。  相似文献   

16.
利用FLUENT软件对径向热管换热器壳程进行模拟计算,在入口烟气质量流量不变的基础上,在0°~65°范围内逐渐改变烟气入射角,分析换热量、压降和单位压降换热系数的变化规律。结果显示:随着烟气入射角的增大,入射角小于45°时,换热量偏差基本不变,压降偏差逐渐减小,而单位压降换热系数逐渐增大,并在约45°时达到最大,此时换热器整体性能最好;大于45°后,换热量偏差明显增大;压降偏差急剧增大,压力损失增加,而单位压降换热系数急剧减小,换热器性能恶化。将模拟结果与测试结果进行比较,误差在5%以内。  相似文献   

17.
Numerical analysis was performed to investigate flow and heat transfer characteristics in spiral coiled tube heat exchanger. Radius of curvature of the spiral coiled tube was gradually increased as total rotating angle reached 12π. As the varying radius of curvature became a dominant flow parameter, three-dimensional flow analysis was performed to this flow together with different Reynolds numbers while constant wall heat flux condition was set in thermal field. From the analysis, centrifugal force due to curvature effect is found to have significant role in behavior of pressure drop and heat transfer. The centrifugal force enhances pressure drop and heat transfer to have generally higher values in the spiral coiled tube than those in the straight tube. Even then, friction factor and Nusselt number are found to follow the proportionality with square root of the Dean number. Individual effect of flow parameters of Reynolds number and curvature ratio was investigated and effect of Reynolds number is found to be stronger than that of curvature effect.  相似文献   

18.
采用CFD数值模拟方法和折流板换热器、帘式折流片换热器周期性全截面计算模型,对两种换热器在正三角形布管方式下的传热系数、阻力、综合性能随Re数的变化情况进行了数值研究.研究结果表明,两种换热器对应的换热系数和壳程压力损失均随Re数的增加而增大,折流板换热器的传热系数大于帘式折流片换热器,约是帘式折流片的1.32倍,但其阻力大幅高于帘式折流片换热器,是帘式折流片换热器的2.4倍左右,两种换热器的综合性能均随Re数的增大而下降,帘式折流片换热器的α/ΔΡ几乎是折流板换热器的2倍,体现了帘式折流片换热器在保持较高的传热效果的情况下,具有显著的流动减阻性能.  相似文献   

19.
传统的弓形折流板换热器因其结构简单、安全可靠及适应性强等优点应用非常广泛,但是传统的弓形折流板换热器换热效率较低,壳程压力损失较大,容易结垢。因此,通过对弓形折流板结构进行改进以改善管壳式换热器的壳程流动传热状况,减小其能耗损失具有十分重大的工程意义。采用数值模拟的方法,对缺口高度为0.2 D的折流板进行开孔优化研究,对不同壳程进口流速下的普通弓形折流板换热器和折流板开孔换热器的壳程流场及温度场分别进行了数值模拟。在壳程进口流速相等的条件下,折流板开孔的换热器比普通弓形折流板换热器的换热效果好;壳程进口速度较低时,效果最明显。  相似文献   

20.
探究了加装三角形小翼纵向涡发生器的H形翅片换热流动特性.模拟结果显示,随着来流速度的增加,回流区里的气流温度逐渐升高;随着雷诺数的增加,压力损失、努谢尔数增大,进出口温差、欧拉数、换热因子和综合性能都减小.随着攻角的增大,加装纵向涡发生器的单H形翅片的进出口温差、压力损失、努谢尔数、欧拉数和换热因子都增大,而综合性能先增大后减小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号