首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
冷补沥青混合料强度研究   总被引:3,自引:0,他引:3  
目前对沥青混凝土路面坑槽、裂缝等病害的修补多采用热拌沥青混合料的形式,温度要求较高。冷补沥青混合料可以在较低的温度下施工,具有高效、节能、快速、及时等优点,可满足路面坑槽修补的需要。根据冷补沥青材料的技术特点,分析混合料强度形成的机理,通过初始强度试验和成型强度试验对混合料的强度进行研究并提出建议。  相似文献   

2.
目的 提出评价冷补沥青混合料疲劳性能的简化试验方法,从而快捷地评价材料质量.方法 根据美国材料试验协会的标准对冷补沥青混合料的疲劳性能进行研究,应用动态圆锥贯入仪获得贯入指数;通过多元线性回归软件(SPSS)建立预估冷补沥青混合料疲劳次数和疲劳试验中所施加的应力的预测模型;为了检验模型的准确性,将其他两种冷补沥青混合料的试验参数与模型中的进行分析对比.结果 冷补沥青混合料的疲劳寿命与贯入指数呈现正相关关系(R2=0.889);疲劳试验施加的应力的数学倒数与贯入指数呈现负相关关系(R2=0.808).结论 笔者提出的简化试验方法 可通过贯入指数简便地预测冷补沥青混合料的疲劳性能,为优选材料提供技术支持.  相似文献   

3.
以柴油、大豆油、自制冷补剂以及基质沥青为原料制备了冷补沥青液,并将其与集料拌和得到了冷补沥青混合料.重点研究了冷补剂用量对冷补沥青液60℃粘度和冷补沥青混合料稳定度的影响以及考察了冷补沥青混合料的粘聚性、抗水剥落性以及低温工作度和抗冻性,并将所制备的沥青混合料与使用市售国产和进口冷补剂制得的混合料进行了性能对比.结果表明:含5%冷补剂的冷补沥青混合料的初始稳定度和成型稳定度分别为3.88kN和6.14kN,试样保留率为93%,沥青裹覆率达99%,低温拌和方便,使用性能好.  相似文献   

4.
以水泥作为填料添加到自制冷补沥青和集料中配制了冷补沥青混合料.通过测试其初始稳定度和成型稳定度研究不同水泥用量对冷补沥青混合料强度的影响;确定最佳水泥用量后,分别以粉煤灰、硅灰、混合填料(水泥-粉煤灰,水泥-硅灰)替代水泥,比较不同类型无机填料对冷补沥青混合料强度的影响.结果表明:水泥最佳用量为3%,硅灰对冷补沥青混合料强度的提高较为显著,混合填料对冷补沥青混合料强度的提高效果较差.不同类型无机填料对冷补沥青混合料初始强度的影响差别较小,最大相差为17.2%,对成型强度的影响差别较大,最大相差达67.9%.  相似文献   

5.
传统的沥青混合料冷再生技术有乳化沥青和泡沫沥青冷再生,本研究尝试采用所开发的溶剂沥青作为结合料对废旧沥青混合料进行冷再生,提出了试件的成型和养生方法,进行了配合比组成设计并采用热拌沥青混合料的标准对溶剂沥青冷再生混合料的性能进行评价.试验结果表明,溶剂沥青冷再生混合料的水稳定性能、高温稳定性能均满足我国热拌改性沥青混合料规范的性能要求,低温性能虽然不满足改性沥青混合料的要求,但能满足普通沥青混合料规范的性能要求.  相似文献   

6.
为提高沥青混合料的高温稳定性,近年来国际上道路沥青标号的应用也向偏稠的方向发展。通过室内试验测试了硬质沥青(AH-30)的性能指标,分别对硬质沥青(AH-30)、重交沥青(AH-70)、SBS改性沥青混合料进行了配合比设计,分析比较了采用不同粘结料的沥青混合料的路用性。试验结果表明硬质沥青混合料的最佳油石比较重交沥青混合料的偏大,具有优秀的高温稳定性和水稳定性,用于沥青路面的中下面层可以减少由于高温和重载所产生的车辙。  相似文献   

7.
在沥青混合料中尝试利用废弃羽毛替代传统纤维以便保护环境。在实验室内首先对羽毛老化温度进行了试验;其次对制备的羽毛沥青胶浆进行针入度、软化点和延度测试;然后在不同羽毛用量下,对羽毛加筋沥青混合料进行马歇尔设计,最后在最佳沥青用量下,对羽毛加筋沥青混合料开展性能试验。结果表明:羽毛可以承受普通施工温度而不老化;羽毛纤维能够改善沥青的针入度与软化点,但是羽毛含量超过1%将显著降低延度;羽毛含量每增加0.5%,最佳沥青用量将增加0.2%;羽毛可以改善马歇尔稳定度、抗水损害性能、抗车辙性能与抗分散性能。  相似文献   

8.
采用特制改性乳化沥青对温拌沥青混合料进行了配合比设计和路用性能(水稳性、高温稳定性)测试,并将其与相同类型的改性沥青混合料的路用性能进行了对比,结果表明,改性乳化沥青温拌沥青混合料和改性沥青混合料的路用性能基本相同且能满足改性沥青混合料的规范要求.由于改性乳化沥青温拌沥青混合料拌和及压实时所需的温度比改性沥青混合料低30℃以上,因此是一种高节能低排放的环保路面材料.  相似文献   

9.
以特立尼达湖沥青(TLA)和A-70# 基质沥青配制了复合沥青,并将其与集料拌和得到浇筑式沥青混合料(GMA),重点研究了沥青胶结料和拌和时间对GMA混合料性能的影响。结果表明:随着沥青胶结料中TLA质量分数的增加,沥青胶结料的热温度敏感性降低,混合料性的流动性变差、硬度变大,TLA最佳的质量分数为70%;混合料拌和时间的延长,沥青胶结料的老化程度增大,混合料的高温性能、流动性变好,但冲击韧性(抗疲劳性)降低,最佳的拌和时间为1.5~3.5 h。  相似文献   

10.
沥青路面变形破坏,最根本的是沥青混合料的路用性能欠佳,应改善国产沥青的使用性能,对混合料的组成结构类型进行改善;选用优质矿质集料、调整集料级配、控制油石比、改变设计参数,提高沥青混合料的整体稳定性。  相似文献   

11.
乳化沥青冷再生混合料疲劳性能及影响因素   总被引:3,自引:0,他引:3  
为研究乳化沥青冷再生混合料抗疲劳性能关键影响因素,采用应力控制模式下的间接拉伸疲劳试验,分析应力水平、水泥用量、旧料(relaimed asphalt pavement,RAP)掺量、乳化沥青类型及乳化沥青用量等因素对冷再生混合料疲劳性能的影响规律,最后,基于灰关联熵分析,对各影响因素进行了量化与比较.结果表明:乳化沥青针入度指标、RAP掺量对乳化沥青冷再生混合料疲劳寿命影响最为显著,乳化沥青用量、乳化沥青延度指标影响次之,应力水平、水泥用量影响最小.  相似文献   

12.
为考察硫磺改性沥青混合料的路用性能,选取AC-13和AC-20两种混合料类型、4种不同的硫磺掺量(硫磺占硫磺改性沥青胶结料的质量百分比分别为0%、30%、35%、40%)作为对比,采用浸水马歇尔试验、冻融劈裂试验、汉堡车辙试验测试了其水稳定性能,采用车辙试验、三点小梁弯曲试验和Overlay Tester试验分别测试了其高温性能、低温性能与疲劳性能,采用动态模量试验获得了其力学参数. 结果表明: 添加质量分数为30%硫磺后,AC-13和AC-20沥青混合料动稳定度分别提高了18%和26%,疲劳开裂性能有所提高, 低温性能没有明显改变. 添加不同质量分数的硫磺,沥青混合料的水稳定性能明显降低,其中AC-13沥青混合料在添加40%硫磺时冻融劈裂强度比下降达22%. 动态模量测试表明硫磺改性沥青混合料与普通沥青混合料动态模量变化趋势相同,但-10 ℃~54 ℃温度区间较普通沥青混合料动态模量要高.  相似文献   

13.
针对重庆高温、多雨、重载地区,为提高沥青路面抗车辙、抗水损坏等性能,对湖沥青改性沥青混合料路用性能以及NS(我国南北方适用的添加剂)与湖沥青复合改性技术进行了试验研究.结果表明:添加湖沥青可提高混合料路用性能,其中高温稳定性得到显著改善,但效果均不如SBS改性沥青混合料;NS-湖沥青复合改性可以显著提高沥青混合料各项路用性能,效果优于单一湖沥青改性和SBS改性.  相似文献   

14.
温拌再生沥青混合料压实特性评价   总被引:6,自引:0,他引:6  
温拌再生沥青混合料是基于沥青温拌技术和再生技术发展而来的新型环保型沥青混合料.研究了基于Sasobit添加剂的温拌再生沥青混合料压实特性随压实温度和旧沥青混合料(RAP)掺量的变化规律,定量评价了旧料(RAP)掺量分别为0%、15%、30%、45%及60%在压实温度分别为140℃、130℃、120℃、110℃和100℃时温拌再生沥青混合料的体积参数的变化,确定了适合温拌再生沥青混合料的压实温度.  相似文献   

15.
硅藻土改性沥青及其混合料的路用性能研究   总被引:1,自引:0,他引:1  
硅藻土作为一种新型沥青改性材料,将其掺配在沥青中,可以作为沥青的改性剂,通过硅藻土改性沥青及其混合料路用性能实验,表明硅藻土能够改善沥青的高温、低温和抗老化性能;而且,硅藻土改性沥青混合料能够显著提高混合料的高温性能、低温性能、水稳定性和抗疲劳性能,具有良好的路用性能,硅藻土是一种很好的改性剂.  相似文献   

16.
再生SBS改性沥青混合料再度老化性能的研究   总被引:2,自引:0,他引:2  
主要研究再生SBS改性沥青混合料的抗老化性能.对沥青进行24 h、48 h TFOT老化,分别模拟沥青的中度和重度老化,然后将老化沥青再生,对再生沥青拌制的混合料及新鲜沥青混合料进行室内短期与长期老化,并对老化后的沥青混合料进行性能试验与对比评价,分析了再生沥青混合料的抗老化性能及其老化规律,评价再生沥青混合料的耐久性.  相似文献   

17.
泡沫沥青冷再生技术是一项绿色环保技术。文中简要介绍了泡沫沥青冷再生的作用机理和厂拌泡沫沥青冷再生混合料施工工艺流程,结合沧州市解放路的路面改造工程的施工,论述了泡沫沥青冷再生混合料的组成设计和路面施工方法,总结了泡沫沥青冷再生施工工艺的质量控制要点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号