首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究SiCp/Al复合材料的切削机理以及切削参数对加工表面质量的影响规律,建立了综合考虑颗粒分布、颗粒-基体界面模型及颗粒损伤行为的切削仿真模型。研究表明:切削过程中主要存在基体塑形变形、SiC颗粒破碎及颗粒脱粘等失效形式,且颗粒与切削路径的相对位置对颗粒的去除机理有很大影响。随着切削深度的增加,切屑尺寸、主切削力的波动程度及其平均值增加,颗粒破碎程度加剧。增大切削速度有利于提高已加工表面的完整性。  相似文献   

2.
碳化硅增强铝基复合材料(SiCp/Al)的振动切削是一项新型特种加工技术。SiCp/Al材料的界面相是其材料性能和切削性能的主要影响因素。通过建立界面相的物理仿真模型,分析不同物理参数条件下的界面力学行为,给出基体、界面和颗粒的断裂机理。通过试验对加工后的材料表面进行SEM观察,对比仿真结果,优化仿真模型参数。  相似文献   

3.
对ELID磨削实验条件下的高体积分数SiCp/Al复合材料工件表面进行了研究,通过扫描电镜(SEM)获取ELID磨削表面的形貌照片并进行观测,采用MATLAB软件对不同工件移动速度和不同磨削深度下的表面SEM照片进行灰度化、增强对比度、提取缺陷形状、降噪滤波以及将缺陷与平坦表面分割生成二值图像等处理,再通过ImageJ软件对图像中的缺陷进一步处理以获取相关数据,由此实现加工表面质量图像评价。结果表明:随着工件移动速度的增大,表面总体破坏程度变大,但大缺陷凹坑的尺寸变化不大,且凹坑数量在增加,所以表面质量变差;随着磨削深度的增加,表面总体破坏程度、大缺陷凹坑的尺寸和数量均在增加,表面质量变差。综上所述,高体积分数SiCp/Al复合材料ELID磨削表面质量在较低工件移动速度和较小磨削深度下最好。  相似文献   

4.
SiCp/Al复合材料是一种典型的难加工的材料,由于其基体中颗粒增强导致常规切削中加工质量差、切削阻力高、加工损伤高,机械加工性差,常规切削已不能满足加工要求。通过切削仿真,对比分析常规与超声振动辅助切削条件下复合材料的切削过程、SiC颗粒的损伤特性、工件的表面形貌与亚表面损伤。结果表明,相比于常规切削,超声振动辅助切削可以提高复合材料的表面完整性,减少复合材料的亚表面损伤,并且能够提高工件的表面质量。  相似文献   

5.
SiCp/Al复合材料导电性差、膨胀系数低,尤其是不具备钎焊能力。为了满足封装壳体的良好钎焊性能,必须对其表面进行镀金改性处理。文中针对SiC体积分数高达60%以上的SiCp/Al复合材料进行镀金工艺研究,主要目的是解决镀金层与基材之间的结合力难题。通过工艺试验,采用工艺分步实施化学镀镍、热处理、电镀镍、电镀金步骤,得到的镀层表面光滑平整,没有明显的结瘤和夹杂,与基材的结合力强。该工艺作为SiCp/Al可焊性表面处理技术之一,对于其他铝基复合材料表面处理具有重要的参考价值。  相似文献   

6.
由于SiCp/Al颗粒增强复合材料具有高比模量、高比强度、耐磨性好、耐高温和导热导电性能良好等优异性能,使其在工程应用中成为了传统金属的精良替代品。针对体积分数为45%的SiCp/Al颗粒增强复合材料进行切削研究,建立切削仿真模型,从应力场的分布情况、颗粒的断裂与破碎机理以及切屑表面的裂纹扩展等方面对切削机理进行仿真分析,并通过铣削实验进行了验证。结果表明,颗粒的断裂与破碎主要发生在剪切区和工件与切屑的分离面,同时由于颗粒的存在会使切屑表面产生微裂纹,微裂纹的扩展是影响切屑表面形态的重要因素。  相似文献   

7.
为研究碳化硅颗粒增强铝基(SiCp/Al)复合材料钻孔出口处崩边损伤及其形成原因,建立了简化的二维钻孔出口有限元模型,选用Johnson-Cook本构模型、Brittle Cracking本构模型和零厚度内聚力单元分别作为铝基体、碳化硅颗粒和Al-SiC界面的本构。根据仿真结果分析了钻孔出口处崩边损伤的形成过程以及钻削过程中进给量对崩边损伤尺寸和轴向钻削力的影响。结果表明:SiCp/Al复合材料崩边损伤尺寸和轴向钻削力会随着钻头进给量的增加而增加;崩边损伤形成的关键在于是否有合适的铝基体塑性变形将萌生的微裂纹进行桥接,且崩边损伤尺寸大小与颗粒分布方式有关。  相似文献   

8.
针对超精密切削SiC_p/Al复合材料加工时表面质量不高的问题,利用ABAQUS有限元分析软件建立三维仿真模型来动态模拟切削表面形成过程。分析了SiC颗粒破碎过程,研究工件表面形成机理;通过比对不同切削深度下的加工表面形貌,分析了刀具相对颗粒位置的变化对表面形貌的影响。结果表明:SiC颗粒存在轻微破损、破裂、断裂现象,加工表面出现空穴、凹坑、划痕三种不同类型的加工缺陷。  相似文献   

9.
SiCp/Al复合材料动态去除过程中极易发生颗粒损伤,为避免或利用复合材料切削加工过程中的颗粒损伤现象,优化SiCp/Al复合材料切削加工,深入研究了SiCp/Al复合材料切削的颗粒损伤现象及其对切削加工的影响。首先,通过位错塞积理论和切屑根部微观观察,揭示了SiCp/Al复合材料切削的颗粒损伤机理,发现位错塞积引起的应力集中是导致界面脱粘的主因,颗粒断裂主要是由集中应力、刀刃挤压颗粒、局部颗粒聚集挤压以及颗粒连成网状结构引起;然后,基于考虑颗粒影响的动态本构模型、Eshelby等效夹杂理论、Weibull统计分布和刀刃-颗粒接触分析,建立了SiCp/Al复合材料切削的颗粒损伤度模型,并借助图像处理技术验证了模型的有效性;最后,根据颗粒损伤度预测结果,分析了颗粒损伤度对SiCp/Al复合材料切削加工的影响。结果显示,颗粒损伤度增大,会使切屑锯齿化程度增强,并严重降低已加工表面质量;颗粒损伤会显著影响颗粒强化效应,导致切削力随颗粒含量增大先升后降、随颗粒尺寸增大而降低。  相似文献   

10.
SiCp/Al复合材料高速切削的研究现状   总被引:1,自引:1,他引:0  
介绍了SiCp/Al复合材料的特点、应用现状和加工难度,综合评述了SiCp/Al复合材料高速切削的国内外研究现状,分析了目前存在的主要问题及今后的研究方向。  相似文献   

11.
为探究SiCp/Al复合材料在切削过程中的切屑形成及颗粒损伤过程,运用ABAQUS有限元分析软件建立了考虑颗粒随机分布的SiCp/Al复合材料切削仿真模型,并在模型中分别定义了Al基体、Al基体-SiC颗粒结合界面以及SiC颗粒的损伤失效行为。结果表明,裂纹在Al基体-SiC颗粒结合界面或Al基体中的形成与扩展是导致切屑断裂的主要原因,也是影响切屑形态的主要因素;SiC颗粒存在完全断裂、局部破碎、整体拔出以及局部脱黏等损伤形式,并相应在切削加工表面或亚表面留下划痕、凹坑、孔洞和凸起等缺陷;椭圆形SiC颗粒的中心位置相对于切削路径的位置越高,SiC颗粒越容易脱黏,切削加工表面缺陷也越小;椭圆形SiC颗粒倾斜夹角(椭圆形长轴与切削方向之间的夹角)为135°时,颗粒损伤程度最高,切削加工表面缺陷最大。分析切屑形成和颗粒损伤过程是研究SiCp/Al复合材料切削加工特性的有效途径,对于优化SiCp/Al复合材料的制造工艺,改善SiCp/Al复合材料已加工表面质量具有重要意义。  相似文献   

12.
SiC颗粒具有较高的硬度,使Al/SiCp复合材料在切削时刀具磨损剧烈。纳米硬质合金具有较高的硬度、韧性及良好的抗磨损能力。制备了纳米硬质合金刀具WC-7Co,对Al/SiCp复合材料进行了切削实验,研究了纳米硬质合金刀具磨损机理和Al/SiCp复合材料的切屑去除机理,以及刀尖处后刀面磨损值。研究认为,纳米硬质合金刀具磨损的机理为SiC颗粒的微切削作用引起的磨料磨损,及SiC颗粒对刀尖刃口的高频、断续冲击引起的微崩刃及微破损,Al/SiCp复合材料的切削实质是断续切削;Al/SiCp复合材料去除机理为切屑的崩碎去除;纳米硬质合金后刀面磨损值较普通硬质合金小30%~50%。  相似文献   

13.
针对SiC颗粒硬度高,切削Al/SiCp复合材料时刀具磨损剧烈,本文提出用具有较高硬度、韧性及良好抗磨损能力的WC-7Co制备纳米硬质合金刀具,并对Al/SiCp复合材料进行了切削实验。研究了纳米硬质合金刀具磨损机理和Al/SiCp复合材料的切屑去除机理,以及刀尖处后刀面磨损值。研究认为,纳米硬质合金刀具磨损的机理为SiC颗粒的微切削作用引起的磨料磨损,及SiC颗粒对刀尖刃口的高频、断续冲击引起的微崩刃及微破损;Al/SiCp复合材料的切削实质是断续切削;去除机理为切屑的崩碎去除;纳米硬质合金后刀面磨损值较普通硬质合金小30%~50%。实验表明,纳米硬质合金较普通硬质合金更适于加工Al/SiCp复合材料。  相似文献   

14.
碳化硅颗粒增强铝基复合材料(SiCp/Al)具有优异的材料力学性能,由于SiC颗粒具有较高的硬度使材料加工极其困难。针对体分比为20%的SiCp/2009Al复合材料进行磨削研究,建立了单磨粒磨削有限元模型,对磨削机理和磨削后材料的表面缺陷情况进行仿真分析,并通过磨削试验进行了验证,分析得出形成的表面缺陷有划伤、分层、毛刺、沟痕和凹坑等。根据试验结果,拟合了回归方程,分析了主轴转速、进给速度和磨削深度对表面粗糙度的影响程度。  相似文献   

15.
运用ABAQUS/Explicit的动态分析过程,基于微细尺度下的Johnson-Cook材料本构方程,在对高体积分数Si C_p/Al复合材料进行建模并充分考虑铝基体和Si C颗粒不同材料属性的基础上,进行了二维正交微细切削有限元仿真。以刀具前角和切削厚度为影响因素,研究了切削过程中材料的变形、切屑的形成机理以及切削力的变化规律,所得结论为Si C_p/Al复合材料的微细钻铣机理研究提供了参考。  相似文献   

16.
高速正交切削SiCp/Al复合材料切削温度仿真研究   总被引:1,自引:0,他引:1  
使用ABAQUS有限元软件对高体分SiCp/Al复合材料的颗粒和基体进行分别定义,仿真研究了高速切削复合材料时的温度场,分析了切削过程中切削用量和刀具角度对工件切削温度的影响。结果表明:在切削过程中,与刀具接触位置的颗粒温度较高且应力值较高;SiC颗粒的温度较Al基体的温度低;第一变形区发现一条沿着剪切角方向非常明显的温升带。在稳定切削阶段,与刀尖接触位置的工件温度较高,且应力集中现象总是发生在SiC颗粒上。随着切削深度和切削深度的增加,切削过程中工件的最高温度均随之增加;随着刀具前角和后角的增大,切削过程中工件的最高温度均随之降低。  相似文献   

17.
SiCp/Al复合材料的加工表面质量研究进展   总被引:1,自引:0,他引:1  
SiC颗粒增强Al基(SiCp/Al)复合材料由于具有优良的综合性能,在同类复合材料中有较大优势,因而在许多对材料具有较高要求的行业中得到了广泛应用,并体现出相应的使用价值。但是,增强相颗粒的加入导致SiCp/Al复合材料加工性能降低。本文结合不同加工技术,并从切削参数、刀具条件和增强颗粒特征等角度综述了国内外学者对SiCp/Al复合材料加工表面质量的研究状况,并对其影响因素进行了详细的论述。  相似文献   

18.
摩擦系数是影响切削过程中切削力、切削热以及已加工表面形貌的重要参数。通过搭建力—热可控摩擦实验平台,探究温度—压力影响下SiCp/Al切削过程中颗粒—基体两相摩擦行为。基于摩擦工件表面粗糙度与表面形貌,揭示了温度—压力影响机理。结果表明,温度—压力作用本质是影响SiC颗粒磨削深度;摩擦系数受压力影响较大,而温度、压力与颗粒自锐性三者的共同作用决定摩擦后工件表面粗糙度。考虑颗粒—基体摩擦行为影响的SiCp/Al切削仿真模型能有效预测切削力,平均误差为3.28%;提高切削速度可有效改善SiC颗粒犁耕基体形成的三角形缺陷宽度,平均减少38.3%。该研究为进一步理解SiCp/Al切削过程中的摩擦特性与提高仿真预测精度提供了理论基础。  相似文献   

19.
王业甫  李莉  杨凯 《工具技术》2019,53(4):72-74
研究了超精密切削加工SiC_p/Al复合材料的力学性能,运用ABAQUS有限元软件建立三维有限元模型,分析刀具前角和切削速度对切削力的影响。仿真和数据分析表明:平均主切削力随切削速度的增大而增大,随刀具前角的增大而减小;由于SiC颗粒的存在,切削时应力过大容易加快刀具磨损。  相似文献   

20.
切削SiCp/Al复合材料刀尖圆弧半径对棱边缺陷的影响   总被引:2,自引:0,他引:2  
运用有限元软件ABAQUS建立了二维切削有限元模型,模拟了碳化硅颗粒增强铝基(SiCp/Al)复合材料的切削过程。通过切削过程中等效应力的变化分析了棱边缺陷的形成过程,进而研究刀尖圆弧半径对切削时出口棱边缺陷的影响。结果表明,在其他切削条件相同的情况下,棱边缺陷随刀尖圆弧半径的增加而逐渐增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号