首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
由于传统检测算法对棉布包装缺陷检测不够准确、对小目标缺陷识别率不够高,所以提出改进的Faster R-CNN深度学习网络,对棉布包装存在的破损、污渍、孔洞、杂质、线头等5种缺陷进行检测。通过对图像进行预处理实现图像增强,然后改进Faster R-CNN中的RPN和ROI结构,为加强小目标缺陷的检测能力,在主干网络中融合特征金字塔网络结构,最后对ROI进行双线性插值以解决多次量化引起的像素偏差问题。实验表明,改进后的网络对棉布包装表面缺陷检测的平均精度均值mAP为91.34%,与传统算法相比,mAP值提高了9.08%。  相似文献   

2.
火电厂生产过程中存在油污泄漏污染雨排口的情况,不及时处理会污染河流环境。雨排口监控图像为俯角图像,用矩形检测框难以正确识别,基于某电厂雨排口俯角图像,提出了一种平行四边形检测框算法。分析了平行四边形检测框的特性和角度检测误差对交并比(IoU)的影响,讨论了分类和回归两种角度检测方法的特点;对于角度分类问题,设计了基于指数函数的类平滑标签;针对类别间隔角度的检测,设计了分类-回归器,学习角度类别间隔的偏移量。最后使用改进后的分类交叉熵损失函数和IoU-Smooth L1损失进行训练。在电厂雨排口数据集中测试表明,所提方法检测效果最好。  相似文献   

3.
传统的图像识别方法不能有效地检测出电力部件的具体位置,同时在干扰物较多的场景下识别准确率较低。针对上述问题,提出来一种改进的Faster R-CNN的电力部件识别算法,使用深度卷积网络自动从图像中提取最适合电力部件特征。Faster R-CNN方法,利用"Hot Anchors"代替均匀采样的锚点来避免大量额外的计算,提高检测效率。最后,21检测框架被修改成4类电力部件检测。实验结果表明:改进的Faster R-CNN的电力部件识别算法,在检测效率和准确率方面分别提升了16.1%和3.8%。  相似文献   

4.
针对现有算法对绝缘子检测精度不高的问题,在Faster R-CNN算法的基础上进行改进,利用检测效果更好、性能更优的ResNet50代替原始VGG网络进行缺陷识别。实验结果表明,改进算法在数据集上的mAP达到77.29%,召回率达到87.55%,与其他经典算法相比具有更好的准确性与较强的实时性。  相似文献   

5.
变电站作为电力运输的中转站,是城市运转,人民生活的重要基础设施。变电站在运行过程中,经常发生由于位置偏僻,不支持机器人和无人机直接进行探测而造成的设备运作温度检测不及时的问题。传统的变电站设备缺陷识别算法是基于机器学习算法,精确度低,只适合单个设备类别的缺陷检测,易受到环境影响。基于此,文中出一种改进的识别变电站设备红外缺陷方法。首先,基于Faster R-CNN的目标设备检测,对6种类型的变电站设备包括套管、绝缘体、电线、电压互感器、避雷针和断路器进行目标检测,以实现设备的精确定位;然后,基于稀疏表示分类(SRC)来识别不同的类,因此可以获得输入样本的实际标签;最后,基于温度阈值判别式算法,在设备区域中识别温度异常缺陷。文中算法实现了在红外线图像下的设备识别和检测,使用文中算法对6类设备的红外图像进行检测,准确率达到91.58%,不同类型设备的缺陷识别率为97.63%,缺陷识别准确率达到87.62%。实验结果表明该方法的有效性和准确性。  相似文献   

6.
针对小样本及复杂环境下接触网关键设备缺陷检测难等问题,文中提出了一种基于改进型Faster R-CNN的接触网设备缺陷检测技术。针对原始的Faster R-CNN网络,采用ResNet-101替代VGG-16来构建基础卷积层,维护目标的原始结构,提升检测速度。通过对不同卷积层的特征图进行多尺寸融合,提高对多种设备缺陷的检测精度。实验结果表明,改进后的Faster R-CNN能够在复杂接触网设备中实现零部件的精确检测,mAP达到88.28%,每张图片检测时间仅需0.15秒。与相同条件下的其它检测算法相比,综合性能最佳。  相似文献   

7.
在研究战斗部战斗力与评价目标毁伤效能时,战斗部爆炸破片运动参数测试属于至为关键内容.破片的高速、小尺寸、多目标、发散性等特征和强火光烟尘环境使得破片群目标的检测和处理更有挑战性.经深入研究与探讨,提出了基于快速卷积神经网络(Faster R-CNN)的复杂背景下破片群检测法.破片图像通过Fast R-CNN的多层卷积和...  相似文献   

8.
目前微型扁平电机制造厂仍采用人工观察法对电机FPC板焊点的焊接质量进行检测,其检测准确率低、速度慢。针对这一问题,提出了一种基于改进Faster R-CNN的缺陷分类检测方法。首先通过多尺度特征融合网络对VGG16的最后两层网络进行融合后,代替原Faster R-CNN中区域候选网络的输入特征图,然后从三个不同深度的多尺度特征融合算法比较改进后网络的准确率、召回率和分数。试验结果表明:改进后的两层多尺度融合特征图代入模型,其缺陷分类检测准确率均值为91.89%,比传统模型增加了7.72%;与其他二种模型相比,改进后的模型分类检测准确率和精度是最高的。  相似文献   

9.
基于双流Faster R-CNN的图像拼接篡改定位算法因综合考虑彩色图像及其噪声图像作为输入而获得良好性能.但是,它仍存在两个不足,定位精度只是块级且经过隐写分析富模型产生的噪声图易夹杂大量冗余非篡改区域信息.为此,提出一种基于双流Faster R-CNN的像素级拼接篡改定位模型.针对第一个缺陷,增加一个全卷积网络分支...  相似文献   

10.
电网公司的巡检工作主要依靠人工完成,需要大量人力物力,且实时性较差。针对该问题,提出一个基于区域推荐卷积神经网络的图像目标监测系统,其中核心算法为Faster R-CNN算法。利用深度学习对摄像装置所采集的现场图像进行分析,执行目标检测任务,若发现威胁电网安全运行的隐患将及时通知工作人员。深度学习发挥其优势需要有效样本达到一定数量,包含隐患的真实样本较少,有些异物种类甚至没有合适的样本,往往不能满足深度学习算法的训练要求。因此研究了一种用于扩充样本的样本生成算法,将隐患目标与背景图像按照一定规则进行融合,达到批量扩充样本集的目的。使用该算法生成的样本进行测试,测试结果表明扩充后的训练集可以使系统性能得到一定提升。此外,通过测试发现,对训练集做一定的预处理可以提升模型的识别性能。  相似文献   

11.
针对现场中采集的绝缘子图像存在目标图像大小尺度不一,以及拍摄角度所造成的目标图像相互遮挡等因素而导致误检或漏检等问题,提出了一种改进的基于卷积神经网络的绝缘子图像检测方法。采用轻量化的ZF网络实现特征提取;确定优化的锚窗比例提升目标图像的检测精度;对NMS后处理算法进行了改进,提出多阶段的惩罚因子算法,适应于多尺度、多比例、绝缘子重叠遮挡等复杂情况。实验结果表明,改进后的Faster R-CNN的检测方法将AP由0.797 7提高到了0.905 8,显著地提升了绝缘子目标图像的检测精度,降低了绝缘子的漏检和误检的概率。  相似文献   

12.
彭豪  李晓明 《电子测量技术》2021,44(24):122-127
针对工业大尺寸图像中小目标检测的平均精度均值低的问题,提出了一种改进的Faster R-CNN-Tiny模型.首先采用特征金字塔结构来对二阶检测器Faster R-CNN进行改进,来增强特征的表达能力,同时增加小目标特征映射分辨率,提高预测精度;其次将原本ResNet结构的最后一块改变为可变形卷积,自动计算各点的偏移,...  相似文献   

13.
电力金具作为输电线路中的不可缺少的关键部件,对电力稳定传输提供了保障,一旦电力金具出现缺陷,就会带来巨大的隐患,造成输电设施的损坏甚至大面积停电事故,影响人们的生产和生活。传统的输电线路检修主要依靠人工现场进行巡检,不仅危险程度高,辨识难度也比较大。人工智能识别技术的不断进步,为电力金具的缺陷识别提供了更好的方法。目前Faster-RCNN算法的目标识别准确率高,但对于螺钉等小金具目标物体的识别率相对较低。本文首先通过双特征融合算子提取特征并进行标记后,输入引进混合注意力机制改进的Faster R-CNN模型中,进行特征再提取,融合重合度较高的特征,并进行缺陷的分类和识别,能够对电力小金具中的螺钉进行高效的辨识。实验结果表明,本文双特征融合的改进Faster R-CNN模型相较于传统的Faster R-CNN模型和YOLO模型的提升效果明显,模型的平均准确率提升了5%,平均精度提升了11%,在保障算法实时性的同时对螺钉等电力小金具具有较好的检测效果。  相似文献   

14.
针对无人机巡检图像中小目标难以检测、障碍物遮挡目标、正负样本不平衡等问题,提出基于改进Cascade R-CNN的输电线路多目标检测方法.改进了Cascade R-CNN的特征提取网络,基于ResNet101基础网络结构,设计6层新型特征金字塔网络(FPN)与之融合,提高了对小目标、重叠目标的检测能力;引入了高斯形式的...  相似文献   

15.
风力发电和电动汽车和合作运行,有助于缓解风力发电的不确定性对电网带来的影响。本文研究风电商和EV聚合商在进行合作博弈时产生的利益分配问题,针对其中风电商的不确定性因素,引入投标偏差惩罚机制;建立风电商和EV聚合商利益分配模型;对于模型不确定因素的随机性,在结合传统的Shapley算法的基础上给出了改进的Shapley算法,有效的解决风电商存在不确定的因素的问题。最后,基于一个具体算例对利益模型和结果进行详细的分析,体现了改进的Shapley的可行性和优越性。  相似文献   

16.
光学元件缺陷会直接影响整个光学系统的性能,在光学元件缺陷检测中,划痕缺陷无疑是检测的难点,划痕缺陷存在着尺寸小,长宽比却比较大,易受杂质影响的问题,本文将深度学习算法应用到光学元件缺陷检测,并根据划痕缺陷的特点,对Mask R-CNN网络模型进行了改进,使算法对划痕缺陷也有了更好的检测效果。首先,将原有的ResNet更换为本文提出的CSPRepResNet,并添加ESE注意力机制,提高了特征提取的能力并减少了计算量;其次,利用K-means算法重新聚类anchor boxes的长宽比例;再次,将目标检测的损失函数由Cross Entropy改为梯度均衡化的Focal Loss,解决了正负样本不平衡问题的同时,更有利于对困难样本的检测,还可以消除离群点的影响。总体来说,检测的mAP@.5由原来的52.1%提高到57.3%,提高了5.2%,且推理速度几乎不变,可见,改进后Mask R-CNN对光学元件划痕缺陷有更好的检测效果。  相似文献   

17.
瞬时无功功率谐波电流检测方法得到广泛应用,其性能主要受低通滤波器的影响。通过统计理论中的假设检验方法判断电网电流处于稳态或瞬态,在不同的状态选择精度优先或动态性能优先的低通滤波器,从而提高瞬时无功功率谐波电流检测方法的性能。作者使用Matlab建立谐波电流模型,并采用文中所建议的方法,对比了改进前与改进后两种电流谐波检测效果,仿真结果证明改进后的方法具有较好的检测效果。  相似文献   

18.
提出使用改进模拟植物生长法求解配电网络重构问题。该算法充分考虑植物生长过程中的智能化因素,避免了搜索过程中的随机机制,缩小了搜索空间,减少了迭代次数。以未来一段时间内网损最小为目标函数,建立配电网重构的数学模型。根据配电网的结构特点,以基本环路为单位形成可断开关集,避免了一些不可行解的产生,降低了变量的维数,提高了搜索效率。通过对IEEE69节点测试系统的计算和分析表明,该方法在解决配电网络重构问题上具有很高的搜索效率和寻优性能。  相似文献   

19.
基于改进遗传算法的无功综合优化   总被引:6,自引:2,他引:6  
简要分析了传统的电力系统无功优化方法的局限性之后,提出了一种快速有效的求解方法——改进的遗传算法(IGA)。在简单遗传算法(SGA)的基础上,提出了自适应遗传算法,该算法采取了与个体分布散度成正比,并随最优个体保留代数成指数上升的自适应变异率;同时也采取了自适应的交叉率.该交叉率与群体中最大的适应度值和每代群体的平均适应度值有密切的关系。算例表明提出的算法优化效果好.而且在精度上和收敛速度上都有较大的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号