首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
通过将原方程变换为对流扩散方程,将所得方程的对流项采用四阶组合紧致迎风格式离散,扩散项采用四阶对称紧致格式离散之后,对得到的空间半离散格式采用四阶龙格库塔方法进行时间推进,得到了一种求解非定常对流扩散反应问题的高精度方法,其收敛阶为O(h4+τ4).经数值实验并与文献结果进行对比,表明该格式适用于对流占优问题的数值模拟,验证了格式的良好性能.  相似文献   

2.
广义平均值差分格式在对流—扩散方程中的应用   总被引:1,自引:0,他引:1  
§1.引言 从逼近的角度看,微分方程的各种数值方法均可认为是对解函数的某种方式的逼近。当解具有大梯度时,线性逼近的效果往往不好。一般的克服办法是细分网格或采用高阶多项式插值。本文考虑从非线性逼近的角度处理微分方程大梯度问题。前几年孙家昶导出广义平均值以及一类半线性数值微分公式,并且运用这种工具解常微分方程的初边值问题,取得良好效果。本文在此基础上对于对流—扩散方程用广义平均值构造了一种自适应的差分格式,使之具有根据解的局部性态选择格式的特点,并分析了格式的截断误差和所引入参数的选取,以及格式的稳定性和保单调性条件。对于一维及二维问题的一  相似文献   

3.
提出了一种新的求解双曲守恒律方程(组)的四阶半离散中心迎风差分方法.空间导数项的离散采用四阶CWENO(central weighted essentially non—oscillatory)的构造方法,使所得到的新方法在提高精度的同时,具有更高的分辨率.使用该方法产生的数值粘性要比交错的中心格式小,而且由于数值粘性与时间步长无关,从而时间步长可根据稳定性需要尽可能的小.  相似文献   

4.
戚园春  刘昉  侯庆志 《计算机仿真》2023,(2):361-366+502
为探究不同通量限制器应用于TVD(Total Variation Diminishing)格式求解对流扩散方程时的适用性,基于3种典型的TVD格式与10种常用的通量限制器,分别求解了线性对流扩散方程、非线性对流扩散方程、拟线性对流扩散方程。数值结果表明,相比于MUSCL(Monotonic Upstream-centered Scheme for Conservation Laws)和MTVDLF(Modified TVDLF)格式,采用TVDLF(TVD Lax-Friedrichs)格式时,计算结果出现了较为严重的数值耗散;对MUSCL和MTVDLF格式进行具体分析发现,关于阶跃型纯对流问题,Superbee限制器的误差最小,Minmod误差最大。关于高斯型对流扩散问题,Minmod误差最大,Woodward误差最小。而关于阶跃型对流扩散问题及Burgers方程,限制器的类型对实验结果影响并不明显。  相似文献   

5.
传输扩散方程的差分格式   总被引:2,自引:0,他引:2  
本文对传输扩散方程构造了两个带单参数的两层半显差分格式,证明了格式的绝对稳定性,对于初边值问题,计算是显式的。  相似文献   

6.
研究了三维对流扩散方程基于有限差分法的多重网格算法。差分格式采用一般网格步长下的二阶中心差分格式和四阶紧致差分格式,建立了与两种格式相适应的部分半粗化的多重网格算法,构造了相应的限制算子和插值算子,并与传统的等距网格下的完全粗化的多重网格算法进行了比较。数值研究结果表明,对于各向异性问题,一般网格步长下的部分半粗化多重网格算法比等距网格下的完全粗化多重网格算法具有个更高的精度和更好的收敛效率。  相似文献   

7.
通过对三次B-样条和三次三角B-样条基函数引入权因子[ω],给出了对流扩散方程的混合三次B-样条配点法。对对流扩散方程空间离散采用混合三次B-样条配点法和时间离散采用向前有限差分,引入参数[θ],建立差分格式。对差分格式的稳定性进行分析,得到稳定性条件。数值实验表明所构造方法的有效性,并且适当调整权因子[ω]和参数[θ]的值,可提高计算的精度。  相似文献   

8.
反应扩散方程在物理、化学和生物等领域有着重要的应用.以往的工作主要在矩形区域上考虑求解,本文研究圆形和环形区域上求解反应扩散方程.首先将反应扩散方程写成极坐标形式,利用二阶有限差分方法在空间r方向和θ方向分别进行离散.将网格上的数值解以矩阵形式表示,并且将微分算子离散成矩阵形式,从而得到紧致形式下的非线性常微分方程组,然后应用隐积分因子方法求解该非线性常微分方程组.紧致隐积分因子方法不仅降低了存储量,而且在每一个时间层只需要求解局部的非线性代数方程组.最后给出数值算例,选取带有精确解的反应扩散方程以及Schnakenberg模型,在圆形和环形区域上求解反应扩散方程组,数值结果显示该方法能够快速且准确地计算.  相似文献   

9.
鉴于目前流行的求解大型稀疏代数方程组的投影迭代法中,为提高迭代效率,在迭代前通常需要对稀疏矩阵进行预处理,改善迭代矩阵的条件数,从而减少迭代次数,这使得发展稀疏矩阵的存储技术变得尤为关键。基于二维对流扩散方程的四阶紧致差分格式,将其转化为代数方程组,得到其三对角块形式的系数矩阵,利用稀疏矩阵存储技术和预条件迭代法进行求解,并与传统的中心差分格式所得数值解进行比较,充分说明了方法的高效性和可靠性。  相似文献   

10.
通过对非线性项的局部外推,对非线性Schroedinger方程给出了一个线性化紧致差分格式,运用不动点定理和能量方法证明了格式的唯一可解性,文章还运用能量方法和数学归纳法,避开困难的先验估计,证明格式在空间方向和时间方向分别具有四阶和二阶精度,数值算例验证了格式的精度和数值稳定性.  相似文献   

11.
非线性扩散方程的一种高精度差分格式   总被引:6,自引:0,他引:6  
§1.引言 在计算流体力学中,Lagrange方法因其具有计算公式简单、物质界面清晰等优点被广泛采用,在Lagrange方法中,网格随流体而运动,初始网格即便具有很好的正交性,也会随着流体的不断运动而发生扭曲乃至相交,从而导致许多计算格式的精度下降,甚至使运算  相似文献   

12.
一维抛物型方程的一个新的高精度显式差分格式   总被引:7,自引:1,他引:7  
工程技术中,常常需要求解抛物型方程.一维情形下的模型问题为 用差分方法解上述问题,隐格式常因计算量很大而不便使用,构造稳定性好精度高的显格式是非常必要的.文山构造了求解P维抛物型方程的分支绝对稳定的显式差分格式,但格式的精度不高,截断误差仅为 .本文就 p= 1情形构造了一个解问题(1)-(3)的新的显格式,精度较文[1]有较大的提高,截断误差可达. §1.差分格式的构造 设△tL为时间步长,△x= L/M(M为正整数)为空间步长,网函数u(j△x,n△t)记为ujn.对方程(1)建立如下的差分格式:其…  相似文献   

13.
51.引言关于对流扩散方程的求解,特征差分方法是其有效方法之一【1,2,3].由于采用了沿特征线离散技术,需要对网格点作插值处理,通常采用的办法是使用线性或二次插值函数.对于线性插值,直接导致误差  相似文献   

14.
提出了一种数值求解三维非定常涡量—速度形式的不可压Navier-Stokes方程组的有限差分方法,该方法在空间方向上具有二阶精度,并且系数矩阵具有对角占优性,因此适合高雷诺数问题的数值求解.同时,给出了适合的二阶涡量边界条件.通过对有精确解的狄利克雷边值问题和典型的驱动方腔流问题的数值实验,验证了本文格式的精确性、稳定性和有效性.  相似文献   

15.
本文构造了一类求解非线性时滞双曲型偏微分方程的紧致差分格式,获得了该差分格式的唯一可解性,收敛性和无条件稳定性,收敛阶为O(τ2+h4),并进一步对时间方向进行Richardson外推,使得收敛阶达到了O(τ4+h4).数值实验表明了算法的精度和有效性.  相似文献   

16.
非线性RLW方程的有限差分逼近   总被引:5,自引:0,他引:5  
引言 正则长波(RLW)方程是非线性长波的另一种表述形式.在进行非线性扩散波研究时,正则长波方程(RLW)因其描述大量重要的物理现象如浅水波和离子波等而占有重要的地位.  相似文献   

17.
二维热传导方程有限差分区域分解算法   总被引:2,自引:0,他引:2  
本文讨论了一类数值求解二维热传导方程的并行差分格式.在这个算法中,通过引进内界点将求解区域分裂成若干子区域.在子区域间内界点上采用非对称格式计算,一旦这些点的值被计算出来,各子区域间的计算可完全并行.本文得到了稳定性条件和最大模误差估计.它表明我们的格式有令人满意的稳定性,并且有着较高的收敛阶.  相似文献   

18.
非线性Leland方程(支付交易费用的期权定价模型)数值解法的研究具有重要的实际意义,本文对非线性Leland方程构造了一种具有并行本性的差分格式一一交替分段CrankoNicolson(ASC—N)格式,给出差分格式解的存在唯一性、稳定性分析及解的误差估计,理论分析表明ASC—N格式为无条件稳定的并行差分格式.数值试验显示ASC—N格式的计算精度与经典的Crank—Nicolson格式相当,但其计算时间要比经典的Crank—Nicolson格式节省将近50%,数值试验验证了理论分析,表明本文的ASC—N格式对求解非线性Leland方程是有效的.  相似文献   

19.
本文构造了二阶椭圆问题的一种混合变分形式,这种新的变分形式有较好的性质,由此导出了一种称为拟一次混合元求解格式,获得了较好的逼近阶.数值结果说明关于梯度的估计达到最优.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号