首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
改性玉米秸秆对Cu~(2+)废水的吸附   总被引:4,自引:1,他引:3  
采用改性玉米秸秆对含Cu2+废水进行吸附处理。研究了改性玉米秸秆吸附剂投加量、pH、温度对废水中Cu2+吸附作用的影响。结果表明:对质量浓度≤50mg/L的Cu2+废水,在秸秆投加质量为0.3g(质量浓度6g/L)、pH为6.5~7.0、吸附温度298K、吸附平衡时间35min条件下,对Cu2+的吸附率约97.2%,吸附量约10mg/g。改性玉米秸秆对Cu2+的吸附量随溶液中Cu2+平衡浓度、温度及吸附时间的增加而增加;吸附过程可用Langmuir、Freundlich和Temkin方程很好地拟合,其中Langmuir方程拟合得最好,最大饱和吸附量为12.195mg/g。吸附是一个自发吸热的快速反应过程,在35min内能达到稳定平衡,Elovich方程能更好地拟合该动力学特征。  相似文献   

2.
采用NaOH处理过的棉花秸秆去除废水中的Pb2+和Cu2+,探究不同因素对Pb2+、Cu2+的吸附效果的影响,确定最佳吸附工艺条件。结果表明,Pb2+最佳吸附条件为:投加量为33.33 g/L,振荡时间为110 min,吸附温度为25℃,溶液初始浓度为15 mg/L,pH值为5.0,去除率达92%;对Cu2+的最佳吸附条件为:投加量26.67 g/L,振荡时间为110 min,吸附温度为55℃,溶液初始浓度为15 mg/L,pH值为5.0,去除率达90.4%。  相似文献   

3.
赤泥是氧化铝工业产生的固体废渣,由于其比表面积大,具有较好的吸附性能。本文将赤泥用于含铜废水的处理,并通过实验探索赤泥吸附含铜废水的条件。实验结果表明,赤泥吸附剂在pH值=4,投加量为6g/L,吸附时间为45min,在室温的条件下,吸附率可达到99.73%,吸附量可达90.9mg/g;进行了等温吸附模型研究,研究结果表明赤泥对Cu2+的吸附符合Langmuir吸附等温模型,Cu2+容易吸附在赤泥吸附剂的表面。本研究为工业固体废物赤泥的利用及含铜废水的处理提供了一种经济有效的途径。  相似文献   

4.
以改性火山岩颗粒作为吸附材料,处理含Cu2+和Zn2+重金属废水,探讨了pH、温度、改性火山岩投加量、吸附时间对吸附性能的影响。结果表明,当pH在3~6之间时,随着pH的增大,改性火山岩颗粒对Cu2+和Zn2+去除率显著提高,当pH大于6后,改性火山岩颗粒对Cu2+和Zn2+去除率增速变缓,并伴有沉淀出现;温度的影响表明:随温度升高改性火山岩颗粒对Cu2+和Zn2+去除效率升高,分析认为该过程是吸热反应,且为自发过程;对Cu2+吸附去除,改性火山岩颗粒最佳投加为10 g/L,对Zn2+吸附去除,改性火山岩最佳投加量为6 g/L;改性火山岩颗粒对Cu2+和Zn2+吸附去除过程属于快吸附过程,饱和吸附时间为8 h。  相似文献   

5.
利用改性膨润土作为吸附剂对含铜废水进行吸附处理,研究了改性膨润土的加量、溶液的pH、吸附时间、吸附温度以及铜离子浓度的起始值对吸附的影响,同时对实际含铜废水进行了吸附处理。结果表明:在pH为6,膨润土用量为1.4 g,温度为40℃的条件下,对40 mg/L的Cu~(2+)废水吸附35 min,Cu~(2+)的去除率可达98.77%,对实际废水Cu~(2+)的去除率可达90%以上。  相似文献   

6.
以新疆哈密拉伊格来克膨润土为原料,制备了羟基锰铝无机改性、十二烷基苯磺酸钠(SDS)和十八烷基三甲基氯化铵(1831)复合改性的阴-阳离子有机改性膨润土,比较了膨润土原土,改性膨润土处理含铜废水的性能,研究了改性膨润土的加入量、pH、吸附时间等因素对改性膨润土吸附实验的影响。结果表明,改性膨润土对废水的处理效果明显好于原土,改性膨润土在投加量为15g/L、pH为7、吸附时间30min、Cu2+质量浓度为40mg/L时,羟基锰铝无机改性膨润土对Cu2+去除率达到90%,阴-阳离子改性膨润土对Cu2+去除率达到93%。  相似文献   

7.
以膨润土对含苯并三氮唑(BTA)和Cu2+的模拟废水进行吸附研究。结果表明:膨润土吸附BTA的最佳pH为3.5,对Cu2+的吸附率随pH升高而增大;pH为3.5时,对BTA、Cu2+的最大吸附率分别达到92.1%、40.3%;膨润土对100 mg/L BTA和Cu2+溶液的饱和吸附量分别为81.3、22.9 mg/g,吸附平衡时间为80~100 min。动力学拟合表明,吸附过程能用Freundlich和Langmuir吸附等温方程描述。  相似文献   

8.
活性炭/粉煤灰处理含铜废水的研究   总被引:1,自引:0,他引:1  
《应用化工》2015,(6):995-999
采用活性炭/粉煤灰处理模拟含铜废水,考察pH、吸附时间、吸附温度、投加量、质量比、活性炭、粉煤灰粒径、铜离子浓度等对吸附效果的影响。结果表明,单纯粉煤灰的吸附效果较差,但100目的粉煤灰与100目的活性炭混合,其吸附效果接近于纯活性炭。活性炭/粉煤灰处理100 m L、30 mg/L模拟含铜废水的最佳吸附条件为:吸附时间3 h,pH 6,吸附温度45℃,活性炭/粉煤灰(质量比1∶1)投加量2.5 g,活性炭和粉煤灰粒径均为100目。在此条件下,铜离子去除率可达97.33%,处理后水中铜离子浓度(0.811 4 mg/L)低于国家二级排放标准(1.0 mg/L)。  相似文献   

9.
《应用化工》2022,(6):995-999
采用活性炭/粉煤灰处理模拟含铜废水,考察pH、吸附时间、吸附温度、投加量、质量比、活性炭、粉煤灰粒径、铜离子浓度等对吸附效果的影响。结果表明,单纯粉煤灰的吸附效果较差,但100目的粉煤灰与100目的活性炭混合,其吸附效果接近于纯活性炭。活性炭/粉煤灰处理100 m L、30 mg/L模拟含铜废水的最佳吸附条件为:吸附时间3 h,pH 6,吸附温度45℃,活性炭/粉煤灰(质量比1∶1)投加量2.5 g,活性炭和粉煤灰粒径均为100目。在此条件下,铜离子去除率可达97.33%,处理后水中铜离子浓度(0.811 4 mg/L)低于国家二级排放标准(1.0 mg/L)。  相似文献   

10.
钢渣吸附Cu~(2)+、Pb~(2+)的影响因素研究   总被引:3,自引:1,他引:2  
拟选取钢渣作为吸附剂,通过正交试验研究了不同温度、吸附时间、溶液pH值和钢渣投加量条件下,钢渣对50 mg/L Cu2+、Pb2+的最佳吸附条件。研究表明:钢渣吸附Cu2+的最佳条件是:温度为25℃,吸附时间为90 min,溶液pH值为6,钢渣投加量为50 g/L;对Pb2+吸附的最佳条件是:温度为25℃,吸附时间为60 min,溶液pH值为5,钢渣投加量为40 g/L。另外,还研究了钢渣对相同浓度Cu2+、Pb2+的竞争吸附作用,研究发现,随着离子浓度的增加Cu2+的竞争吸附系数始终大于Pb2+的竞争吸附系数,表明钢渣对Cu2+的吸附能力大于Pb2+。  相似文献   

11.
在微波辐射下,以壳聚糖为原料,研究了碱用量、氯乙酸用量、反应温度和微波加热时间四个因素对羧甲基壳聚糖制备的影响。并将其用于对废水中Cu2+的吸附,考察了不同pH,羧甲基壳聚糖的用量,振荡时间及溶液中Cu2+初始浓度对吸附性能的影响。结果表明最佳合成羧甲基壳聚糖的工艺条件为1.0g壳聚糖,6.0mL30%氢氧化钠溶液,1.4g氯乙酸,反应θ为50℃,微波加热t为20 min。当溶液pH为5.45,羧甲基壳聚糖投加量为0.03 g,振荡t为1.5 h,Cu2+初始质量浓度为300 mg/L时,在此条件下羧甲基壳聚糖对Cu2+溶液的吸附量为177.83mg/g。  相似文献   

12.
通过静态吸附试验,研究了茶叶渣对废水中Cu2+的吸附效果。考查了吸附时间、吸附剂用量、p H值、温度等对吸附效果的影响,并对吸附热力学进行了研究。结果表明:对50m L 20mg/L的Cu2+废水处理,吸附可在90min内完成,最佳投加量为0.7g,最佳p H值为6,温度对其影响较小,较优的吸附率可达68%。茶叶渣对Cu2+的吸附符合Langmuir等温吸附模型,最大饱和吸附量为2.08mg/g。  相似文献   

13.
以D072型树脂为载体制备非均相Fenton催化剂,并研究了该催化剂在氧化剂作用下对含铜废水的处理效果。在催化剂制备阶段,D072型树脂吸附Fe~(2+)的平衡时间为60min。当Fe~(2+)的质量浓度为1 200mg/L时,D072型树脂上负载的Fe~(2+)量基本不变,载铁量达到107.42mg/g,并且温度对催化剂载铁量的影响不大。对于100mg/L的含铜废水,最佳的处理条件为:pH值3,催化剂的投加量15g/L,H_2O_2的质量浓度672mg/L,反应温度30℃,反应时间90min。在此条件下,Cu2+的去除率可达到87.17%。催化剂在多次使用后处理效果依旧良好,但处理速率每次都有所下降。  相似文献   

14.
采用氢氧化钠改性的硅藻土作为吸附材料,研究了吸附剂用量、搅拌时间、pH值以及废水浓度等因素对吸附效果的影响。结果表明,在100 mL Cu2+的质量浓度为10.49 mg/L,改性硅藻土投加量为3.5 g,pH值为8.5,吸附时间为30 min的条件下,废水中Cu2+的去除率最高可达97.93%,出水Cu2+的质量浓度低于0.22 mg/L,达到了GB 8978—1996《污水综合排放标准》一级标准的要求。  相似文献   

15.
硝酸改性凹凸棒石粘土及吸附Cu2+的工艺研究   总被引:11,自引:0,他引:11  
将凹凸棒石粘土用硝酸进行改性处理,然后用于对含铜废水中铜离子的吸附,研究了硝酸浓度、改性凹凸棒石粘土用量、吸附时间、pH值等因素对吸附性能的影响。结果表明:经4mol/LHNO3改性处理后的凹凸棒石粘土吸附能力最好,凹凸棒石粘土加入量为30g/L,水样pH值为4,超声搅拌20min,废水中Cu2+的吸附率接近99%,同时吸附剂的再生实验表明,复用时吸附量下降平缓,可以重复使用。  相似文献   

16.
文章考察了钠基蒙脱土(Na-MMT)对水中铜离子的吸附,得最佳条件Cu2+浓度为41.4 mg/L时,温度35℃,吸附时间20 min,溶液的pH值为7左右,吸附剂用量为5 g/L,Cu2+去除率达97.3%以上,吸附后水中Cu2+离子含量为1.12 mg/L达到了我国国家污水综合排放标准。  相似文献   

17.
粉末和乳液氢氧化镁处理含镍废水的比较   总被引:1,自引:0,他引:1  
分别采用粉末和乳液氩氧化镁处理含镍废水.考察搅拌时间、氢氧化镁用量、废水初话pH以及温度等条件对去除率的影响.同时测定了吸附等温线.并对二者的处理效果进行了比较.结果表明:氢氧化镁对含镍废水的处理效果很好,去除率可以达到98%以上:氢氧化镁具有很强的缓冲能力,废水的初始pH值和温度对去除率影响不大;处理过程是一个吸附过程,等温线符合郎格缪尔方程;对镍离子浓度为31.52mg/L、pH为2.4的废水.粉末和乳液氢氧化镁处理的搅拌时间分别为30min和15min.最佳用量分别为4g/L和2g/L.饱和吸附量分别为0.2379g/g和1.101g/g;乳液氢氧化镁比粉末的处理反应速度快、用量少、饱和吸附量大,处理效果更为理想. 了吸附等温线.并对二者的处理效果进行了比较.结果表明:氢氧化镁对含镍废水的处理效果很好,去除率可以达到98%以上:氢氧化镁具有很强的缓冲能力,废水的初始pH值和温度对去除率影响不大;处理过程是一个吸附过程,等温线符合郎格缪尔方程;对镍离子浓度为31.52mg/L、pH为2.4的废水.粉末和乳液氢氧化镁处理的搅拌时间分别为30min和15min.最佳用量分别为4g/L和2g/L.饱和吸附量分别 0.2379g/g和1.101g/g;乳液氢氧化镁比粉末的处理反应速度快、用量少、饱  相似文献   

18.
《应用化工》2016,(8):1492-1495
利用脐橙皮渣为原料制备的活性炭吸附水中低浓度的Cu(Ⅱ),从pH值、吸附时间、活性炭投入量、Cu(Ⅱ)初始质量浓度等因素探讨了活性炭对低浓度含铜废水的吸附性能,并分析了其吸附等温模型。结果表明,脐橙皮渣活性炭以中孔为主,对吸附低浓度含Cu(Ⅱ)废水过程符合Freundlich等温吸附模型,有pH条件环境友好、吸附速度快、活性炭用量少等优点。在pH 6.0,活性炭投入量0.2 g/L,吸附时间25 min条件下,浓度5.0 mg/L以下的含Cu(Ⅱ)水体都可以被处理至低于1.0 mg/L。  相似文献   

19.
《应用化工》2022,(8):1492-1495
利用脐橙皮渣为原料制备的活性炭吸附水中低浓度的Cu(Ⅱ),从pH值、吸附时间、活性炭投入量、Cu(Ⅱ)初始质量浓度等因素探讨了活性炭对低浓度含铜废水的吸附性能,并分析了其吸附等温模型。结果表明,脐橙皮渣活性炭以中孔为主,对吸附低浓度含Cu(Ⅱ)废水过程符合Freundlich等温吸附模型,有pH条件环境友好、吸附速度快、活性炭用量少等优点。在pH 6.0,活性炭投入量0.2 g/L,吸附时间25 min条件下,浓度5.0 mg/L以下的含Cu(Ⅱ)水体都可以被处理至低于1.0 mg/L。  相似文献   

20.
刘洋  涂宁宇  谢文玉  金仁和 《广东化工》2012,39(10):117-118,140
在单因素实验的基础上,采用响应面优化法对油页岩吸附水中Cu2+的过程进行优化。设定吸附质/吸附剂、pH、反应时间为3个主要影响因子,Cu2+吸附率为响应值,结合实验结果建立了响应面模型。方差分析表明模型显著,可用于预测油页岩原矿对铜离子的吸附;优化后的吸附最佳条件吸附质/吸附剂=25 mg/g,pH=6,接触时间=29 min,预测吸附率可达100%。在此条件下,实测Cu2+的吸附率达98.4%,说明油页岩对Cu2+具有良好的吸附效果,可用于处理低浓度含铜废水。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号