首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
During cold spraying (CS), heat exchange between the hot driving gas and the solid bodies, e.g., spray nozzle and substrate, results in the temperature redistribution within the solid bodies. In this study, numerical and experimental investigations on the heating behavior of the substrate and nozzle wall were conducted to clarify the temperature distribution within the solid bodies in CS. The results show that after heating by the hot gas, the highest temperature presents at the center point of the substrate and decreases toward the substrate back surface and edge. With increasing standoff distance or decreasing inlet temperature, the substrate temperature decreases gradually, but the temperature gradient within the substrate changes little. The numerical results are consistent with the experimental measurements. Besides, it is also found that increasing the substrate size (diameter) can lead to the gradual increment in the substrate temperature. Moreover, the numerical study on the temperature distribution within the nozzle wall reveals that the highest temperature presents at the throat section of the nozzle and that the nozzle material significantly affects the temperature distribution within the nozzle wall.  相似文献   

2.
This study investigates the effect of spray angle on the temperature distribution within the metallic substrate in cold spraying. Computational fluid dynamic approach is employed in this work to achieve this objective. The simulated results show that spray angle significantly influences the temperature distribution within the substrate. For the perpendicular spraying, the temperature gradient contours present regularly annular shape, which means the temperature distribution is only dependent on the radial position. Furthermore, the peak value of the surface temperature is not at the geometric center (stagnation point) but at the position slight away from the center, which may result from the transition of the flow from laminar to turbulent state. Along the radial direction, there exists a secondary peak of the temperature arising from the expansion waves in the adherence jet. With decreasing the spray angle, the secondary peak in the uphill direction disappears. But in the downhill direction, the secondary peak still exits and the distance from the geometric center increases with the decrease in spray angle. In addition, the temperature distribution within the substrate indicates that the residual tensile stress inside the substrate mainly exists near the front zone, but for the angular spraying at the uphill direction, it appears near the back surface. Besides, the simulated results indicate that the best way to preheat the substrate at the angular condition is to move the nozzle from uphill toward the downhill direction.  相似文献   

3.
Behavior of an axisymmetric cold spray supersonic gas-particle jet passing through an axisymmetric aperture having a diameter smaller than the jet dimensions is considered. The particular case studied in the paper is the interaction between a supersonic jet delivered by a nozzle with a 7.8 mm exit diameter and a solid plate with a 3 mm aperture. The gas and aluminum particle parameters after passing through the aperture are experimentally and numerically studied. Under conditions used in this study, the decelerating influence of the aperture on the aluminum particle velocity is found negligible for spray distances less than 40 mm.  相似文献   

4.
冷喷涂过程中,喷嘴出口后射流流场的波系结构对粒子冲击基板时的速度有很大影响.利用CFD软件Fluent对不同出口直径的喷嘴后单相自由射流和两相冲击射流流场进行了模拟计算.结果表明,喷嘴出口直径对冷喷涂射流流场及粒子冲击速度会产生一定的影响;在喷嘴出口与基板之间存在一个最佳距离使得粒子能够获得较大的冲击速度,该最佳距离会随喷嘴出口直径的增加而线性增加.  相似文献   

5.
冷喷涂工艺中射流过程的数值模拟研究   总被引:5,自引:0,他引:5  
在冷喷涂材料表面改性技术研究中,喷嘴出口的超音速气流射流流场直接影响喷涂的效果和喷涂质量,故喷嘴出口后射流的流场数值计算分析非常重要。通过对数学模型的工程简化,完成气相射流流场的数值模拟,给出了可压缩气体压力、温度和速度分布,根据计算结果,完成对实验的优化设计。  相似文献   

6.
Low-temperature particle coating requires supersonic flow. The characteristics of this supersonic flow are investigated using a nonlinear turbulence model. The low-temperature, supersonic particle deposition technique is valuable because its rapid and dense coating minimizes thermal damage to both particles and substrate. It has excellent potential for industrial production of low-cost thin films. Stagnation pressures and temperatures of the supersonic nozzle range from 4 < P o < 45 bar and 300 < T o < 1500 K, respectively. The exit Mach number, M e, and velocity, V e, range from 0.6 to 3.5 and 200 to 1400 m/s, respectively. The effects of stagnation pressure (P o) and stagnation temperature (T o) on supersonic flow impinging upon a substrate are described. In other words, the energy loss through shockwaves and shear interactions between the streaming jet and surrounding gas are quantified as functions of P o and T o. P o is decreased because of friction (loss ranges from 40 to 60%) while T o is nearly conserved. To realize the nozzle exit condition of P e = P amb, we demonstrate that P o should be adjusted rather than T o, as T o has little effect on exit pressures. On the other hand, T o is more influential than P o for varying the exit velocity. Various nozzle geometries yielding different flow characteristics, and hence, different operating conditions and coating performances are investigated. The corresponding supersonic flows for three types of nozzles (under-, correctly , and over-expanded) are simulated, and their correctly expanded (or shock-free) operating conditions are identified. Diamond shock structures induced by the pressure imbalance between the exiting gas and the surrounding atmosphere are captured.  相似文献   

7.
Numerical study was conducted to investigate the effect of substrate angle on particle impact velocity and normal velocity component in cold gas dynamic spraying by using three-dimensional models based on computational fluid dynamics. It was found that the substrate angle has significant effect on particle impact velocity and normal velocity component. With increasing the substrate angle, the bow shock strength becomes increasingly weak, which results in a gradual rise in particle impact velocity. The distribution of the impact velocity presents a linearly increase along the substrate centerline due to the existence of the substrate angle and the growth rate rises gradually with increasing the substrate angle. Furthermore, the normal velocity component reduces steeply with the increase in substrate angle, which may result in a sharp decrease in deposition efficiency. In addition, the study on the influence of procedure parameters showed that gas pressure, temperature, type, and particle size also play an important role in particle acceleration.  相似文献   

8.
Plasma jet and particle behavior in conventional single-arc plasma spraying has been subject to intensive numerical research. However, multi-arc plasma spraying is a different case which has yet to be investigated more closely. Numerical models developed to investigate the characteristics of multi-arc plasma spraying (plasma generator, plasma jet, and plasma–particle interaction models) were introduced in previous publications by the authors. The plasma generator and plasma jet models were already validated by comparing calculated plasma temperatures with results of emission spectroscopic computed tomography. In this study, the above-mentioned models were subjected to further validation effort. Calculated particle in-flight characteristics were compared with those determined by means of particle diagnostics and high-speed videography. The results show very good agreement. The main aim of the current publication is to derive conclusions regarding the general characteristics of plasma jet and particle in-flight behavior in multi-arc plasma spraying. For this purpose, a numerical parameter study is conducted in which the validated models are used to allow variations in the process parameters. Results regarding plasma jet/particle in-flight temperatures and velocities are presented. Furthermore, the general characteristics of plasma jet and particle behavior in multi-arc plasma spraying are discussed and explained. This contributes to better understanding of the multi-arc plasma spraying process, in particular regarding the injection behavior of particles into hot regions of the plasma jet. Finally, an example test case showing a possible practical application area of the models is introduced.  相似文献   

9.
Substrate preheating always takes an important role in particle bonding and formation of the first layer coating in cold gas dynamic spraying (CGDS). In this study, a systemic investigation on substrate preheating process is conducted with Cu, Al, Steel, and Ti substrate by both numerical and experimental methods. The computational fluid dynamic (CFD) approach is adopted to simulate the heat exchange process between gas and solid substrate. The numerical results show that substrate can be significantly preheated by the high-temperature gas, especially by the gas at the near-wall zone behind the bow shock where the temperature is extremely high. Moreover, the comparison between different substrates implies that substrates with smaller thermal conductivity can achieve higher surface temperature and larger temperature gradient which may greatly contribute to the generation of residual stress, such as Ti substrate in this study. For the heat flux, Cu substrate obtains the largest value at the center zone of the substrate surface, followed by Al, Steel, and Ti substrate, but at the outer zone, the heat flux through the Cu substrate surface is smaller than the other three types of substrates. Besides, based on the experimental results, it is found that the substrate surface temperature amounts to the peak value only when the preheating time is sufficiently long.  相似文献   

10.
The final quality of cold-sprayed coatings can be significantly influenced by gas-substrate heat exchange, due to the dependence of the deposition efficiency of the particles on the substrate temperature distribution. In this study, the effect of the air temperature and pressure, as process parameters, and surface roughness and thickness, as substrate parameters, on the convective heat transfer coefficient of the impinging air jet was investigated. A low-pressure cold spraying unit was used to generate a compressed air jet that impinged on a flat substrate. A comprehensive mathematical model was developed and coupled with experimental data to estimate the heat transfer coefficient and the surface temperature of the substrate. The effect of the air total temperature and pressure on the heat transfer coefficient was studied. It was found that increasing the total pressure would increase the Nusselt number of the impinging air jet, while total temperature of the air jet had negligible effect on the Nusslet number. It was further found that increasing the roughness of the substrate enhanced the heat exchange between the impinging air jet and the substrate. As a result, higher surface temperatures on the rough substrate were measured. The study of the effect of the substrate thickness on the heat transfer coefficient showed that the Nusselt number that was predicted by the model was independent of the thickness of the substrate. The surface temperature profile, however, decreased in increasing radial distances from the stagnation point of the impinging jet as the thickness of the substrate increased. The results of the current study were aimed to inform on the influence and effect of substrate and process parameters on the gas-substrate heat exchange and the surface temperature of the substrate on the final quality of cold-sprayed coatings.  相似文献   

11.
This study presents the validation of a developed three-dimensional multicomponent model for cold spray process using two particle image velocimetry (PIV) experiments. The k-ε type 3D model developed for spherical titanium particles was validated with the measured titanium particle velocity within a nitrogen and helium supersonic jet. The 3D model predicted lower values of particle velocity than the PIV experimental study that used irregularly shaped titanium particles. The results of the 3D model were consistent with the PIV experiment that used spherical titanium powder. The 3D model simulation of particle velocity within the helium and nitrogen jet was coupled with an estimation of titanium particle temperature. This was achieved with the consideration of the fact that cold spray particle temperature is difficult and expensive to measure due to considerably lower temperature of particles than thermal spray. The model predicted an interesting pattern of particle size distribution with respect to the location of impact with a concentration of finer particles close to the jet center. It is believed that the 3D model outcomes for particle velocity, temperature and location could be a useful tool to optimize system design, deposition process and mechanical properties of the additively manufactured cold spray structures.  相似文献   

12.
The deposition behavior of sprayed individual metallic particles on the substrate surface in the cold spray process was fundamentally investigated. As a preliminary experiment, pure copper (Cu) particles were sprayed on mirror-polished stainless steel and aluminum (Al) alloy substrate surfaces. Process parameters that changed systematically were particle diameter, working gas, gas pressure, gas temperature, and substrate temperature, and the effect of these parameters on the flattening or adhesive behavior of an individual particle was precisely investigated. Deposition ratio on the substrate surface was also evaluated using these parameters. From the results obtained, it was quite noticeable that the higher substrate temperature brought about a higher deposition rate of Cu particles, even under the condition where particles were kept at room temperature. This tendency was promoted more effectively using helium instead of air or nitrogen as a working gas. Both higher velocity and temperature of the particles sprayed are the necessary conditions for the higher deposition ratio in the cold spraying. However, instead of particle heating, substrate heating may bring about the equivalent effect for particle deposition. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

13.
Cold spraying is a new coating process and manufacturing technology. The coating quality is upgraded with dense layers, higher bonding force and lower oxidation comparing with thermal spraying. Bonding of particles onto substrate is a result of extensive plastic deformation and related phenomena at the interface. The cold-sprayed copper and aluminum deposits on aluminum and steel substrates were prepared, and the features of interface were observed by using scanning electron microscope (SEM). Then the particle/substrate impact process was modeling through finite-element methods (ANSYS/LS-DYNA software). Numerical results show that the high plastic strain at the interface can result in an adiabatic shear instability at the interface. Due to these extremely high pressure and strain rate, it may be more appropriate to treat the material adjacent to the particle/substrate interface as a viscous ‘fluid-like’ material, various fluid-based phenomena, such as interfacial instabilities and roll-ups and vortices, can lead to interface material mixing. In numerical simulation, adiabatic shear instability both in the particle and the substrate at contact interface is regarded as a criterion for predicting the optimal process parameters and the bonding feature.  相似文献   

14.
弧电压对等离子射流温度脉动的影响   总被引:1,自引:0,他引:1  
电弧等离子体射流中的湍流是等离子体射流的典型物理现象之一。射流的脉动将直接影响射流温度的脉动,而以往的研究认为射流存在一个处于稳定状态的核心区域,本文采用电弧等离子体光谱诊断及数字高速摄影的方法对常压电弧等离子体射流进行了研究,采用了傅立叶变换的方法分析弧电压和射流光谱强度信号,发现电源的交流分量和阳极弧点运动对整个射流的脉动特性都有影响。射流并不存在一个处于稳定状态的核心区域,相反从谱线强度脉动与弧电压脉动的FFT分析图中可以看到,射流的脉动主要是由电弧电压的脉动造成的。  相似文献   

15.
在经磨抛处理后的光滑铝合金表面上,利用超音速等离子喷涂制备WC-12Co涂层,通过扫描电镜观察分析,对涂层的结合机理进行了研究.发现涂层与基体的结合是以机械结合为主,还伴有部分冶金结合、物理结合和扩散.实验及模拟结果表明:硬质相WC能够嵌入到基体内部,基体的硬度越小,WC颗粒嵌入基体表面的深度越大;颗粒的速度越大,撞击基体产生的凹坑深度也越大.  相似文献   

16.
Cold gas spray technology has been used to build up coatings of Fe-base metallic glass onto different metallic substrates. In this work, the effect of the substrate properties on the viscoplastic response of metallic glass particles during their impact has been studied. Thick coatings with high deposition efficiencies have been built-up in conditions of homogeneous flow on substrates such as Mild Steel AISI 1040, Stainless Steel 316L, Inconel 625, Aluminum 7075-T6, and Copper (99.9%). Properties of the substrate have been identified to play an important role in the viscoplastic response of the metallic glass particles at impact. Depending on the process gas conditions, the impact morphologies show not only inhomogeneous deformation but also homogeneous plastic flow despite the high strain rates, 108 to 109 s?1, involved in the technique. Interestingly, homogenous deformation of metallic glass particles is promoted depending on the hardness and the thermal diffusivity of the substrate and it is not exclusively a function of the kinetic energy and the temperature of the particle at impact. Coating formation is discussed in terms of fundamentals of dynamics of undercooled liquids, viscoplastic flow mechanisms of metallic glasses, and substrate properties. The findings presented in this work have been used to build up a detailed scheme of the deposition mechanism of metallic glass coatings by the cold gas spraying technology.  相似文献   

17.
通过数值模拟和实验的方法,研究了齿轮冷滚打成形过程中温度的分布规律.论述了冷滚打成形原理,建立了其成形过程的有限元模型,对成形过程的温度分布进行了分析.结果表明:由于滚打轮和材料之间的摩擦作用,齿坯温度上升;但又因材料热传导率较高,这些综合因素使得齿坯温度上升较慢.  相似文献   

18.
19.
Cold spray is a promising process to fabricate high-quality metallic coatings. However, it is necessary to improve some properties, especially the adhesive strength of the coating to the substrate to clarify deposition mechanism of the solid particles onto substrate surface. In this study, deposition behavior of the cold sprayed copper fine particles was observed precisely and the adhesive strength of the coating was evaluated. The deposition behavior of the sprayed individual copper particles on mirror polished stainless steel substrate was fundamentally investigated. The interface microstructure between sprayed particle and substrate revealed that an amorphous-like band region was recognized at interface during coating fabrication at high power conditions. For the deposition mechanism of the cold sprayed particles onto substrate surface, it was indicated that the deformation of the particles initially induce the destruction of its surface oxide and an appearance of the active fresh surface of the material may enhance the bonding between particles and substrate. On the other hand, in coating fabrication at high power condition, bonding between particle and substrate may be possibly formed via oxygen-rich amorphous-like layer at interface.  相似文献   

20.
Influence of Flow Swirling and Exit Shape of Barrel Nozzle on Cold Spraying   总被引:1,自引:0,他引:1  
Traditionally, in cold spray two-phase supersonic jet formed with the help of converging-diverging nozzle are used. In this study an alternative design of cold spray nozzle is proposed in which a high velocity two-phase flow is created using an intense flow swirling in a constant section barrel (cylinder) with double-edged bevel exit. As a result, a high velocity gas-powder mixture jet is produced presenting a fan-shaped jet spreading at a large angle in one plane and approximately of equal size along the normal to this plane. This results in greater angles of particle deposition and, hence, in larger deposition widths, with the maximum width of deposition spot reaching 25 barrel diameters. The performed experimental study proves the new nozzle design to be appropriate for deposition of cold-sprayed coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号