首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NiCoCrAlTaY bond coat was deposited by cold spraying to assemble thermal barrier coatings (TBCs). The microstructure of the cold-sprayed bond coat was examined using scanning electron microscopy. TBCs consisting of cold-sprayed bond coat and plasma-sprayed YSZ were pretreated at different conditions to form different thermally grown oxides (TGOs) before thermal cycling test. The influence of the TGO composition on the thermal cyclic lifetime was quantitatively examined through the measurement of the coverage ratio of the mixed oxides on the bond coat surface. The results showed that the bond coat exhibited a dense oxidation-free microstructure, and TGOs in different morphologies and constituents were present after thermal cyclic test. The formation of TGOs was significantly influenced by pretreatment conditions. Two kinds of TGO were detected on the surface of bond coat after the spallation of YSZ coatings. One is the α-Al2O3-based TGO and the other is the mixed oxide. It was found that the thermal cyclic lifetime is inversely proportional to the coverage ratio of the mixed oxides formed at the bond coat/YSZ interface. The high coverage ratio of the mixed oxide on the interface leads to the early spalling of YSZ coating.  相似文献   

2.
Plasma sprayed thermal barrier coatings (TBCs) are applied to gas turbine components for providing thermal insulation and oxidation resistance. The TBC systems currently in use on superalloy substates typically consists of a metallic MCrAlY based bond coat and an insulating Y2O3 partially stabilized ZrO2 as a ceramic top coat (ZrO2 7–8 wt.% Y2O3). The oxidation of bond coat underlying yttria stabilized zirconia (YSZ) is a significant factor in controlling the failure of TBCs. The oxidation of bond coat induces to the formation of a thermally grown oxide (TGO) layer at the bond coat/YSZ interface. The thickening of the TGO layer increases the stresses and leads to the spallation of TBCs. If the TGO were composed of a continuous scale of Al2O3, it would act as a diffusion barrier to suppress the formation of other detrimental mixed oxides during the extended thermal exposure in service, thus helping to protect the substrate from further oxidation and improving the durability. The TBC layers are usually coated onto the superalloy substrate using the APS (Atmospheric plasma spray) process because of economic and practical considerations. As well as, HVOF (High velocity oxygen fuel) bond coat provides a good microstructure and better adhesion compared with the APS process. Therefore, there is a need to understand the cycling oxidation characteristic and failure mode in TBC systems having bond coat prepared using different processes. In the present investigation, the growth of TGO layers was studied to evaluate the cyclic oxidation behavior of YSZ/Al2O3 composite TBC systems with APS-NiCrAlY and HVOF-NiCrAlY bond coats. Interface morphology is significantly effective factor in occurrence of the oxide layer. Oxide layer thickening rate is slower in APS bond coated TBCs than HVOF bond coated systems under thermal cycle conditions at 1200 °C. The YSZ/Al2O3 particle composite systems with APS bond coat have a higher thermal cycle life time than with the HVOF bond coating.  相似文献   

3.
The performance of thermal barrier coatings is influenced by the high temperature oxidation behavior of the bond coat. In this paper, NiCoCrAlTaY bond coat was deposited by high velocity air-fuel (HVAF) spraying, and the microstructure and surface morphology of the bond coat before and after oxidation were examined to aim at developing high performance thermal barrier coatings. Results showed that the HVAF sprayed NiCoCrAlTaY coating presented a dense microstructure and some partially melted particles with a near spherical morphology were deposited on the coating surface. A uniform ??-Al2O3 scale was formed on the HVAF sprayed MCrAlY coating surface after the pre-oxidation treatment in an argon atmosphere. A small fraction of nodular-shaped mixed oxides was formed when the MCrAlY coating was oxidized for 100?h at 1000?°C. The amount of the mixed oxides increased less significantly after 200?h oxidation. A homogeneous ??-Al2O3 oxide scale was maintained over the large particles on the bond coat surface after 200?h oxidation at 1000?°C in air. A model is proposed to explain the formation of nodular-shaped mixed oxides.  相似文献   

4.
Air plasma sprayed TBCs usually include lamellar structure with high interconnected porosities which transfer oxygen from YSZ layer towards bond coat and cause TGO growth and internal oxidation of bond coat.The growth of thermally grown oxide (TGO) at the interface of bond coat and ceramic layer and internal oxidation of bond coat are considered as the main destructive factors in thermal barrier coatings.Oxidation phenomena of two types of plasma sprayed TBC were evaluated: (a) usual YSZ (yttria stabilized zirconia), (b) layer composite of (YSZ/Al2O3) which Al2O3 is as a top coat over YSZ coating. Oxidation tests were carried out on these coatings at 1100°C for 22, 42 and 100h. Microstructure studies by SEM demonstrated the growth of TGO underneath usual YSZ coating is higher than for YSZ/Al2O3 coating. Also cracking was observed in usual YSZ coating at the YSZ/bond coat interface. In addition severe internal oxidation of the bond coat occurred for usual YSZ coating and micro-XRD analysis revealed the formation of the oxides such as NiCr2O4, NiCrO3 and NiCrO4 which are accompanied with rapid volume increase, but internal oxidation of the bond coat for YSZ/Al2O3 coating was lower and the mentioned oxides were not detected.  相似文献   

5.
A thermally grown oxide (TGO) layer is formed at the interface of bond coat/top coat. The TGO growth during thermal exposure in air plays an important role in the spallation of the ceramic layer from the bond coat. High temperature oxidation resistance of four types of atmospheric plasma sprayed TBCs was investigated. These coatings were oxidized at 1000 °C for 24, 48 and 120 h in a normal electric furnace under air atmosphere. Microstructural characterization showed that the growth of the TGO layer in nano NiCrAlY/YSZ/nano Al2O3 coating is much lower than in other coatings. Moreover, EDS and XRD analyses revealed the formation of Ni(Cr,Al)2O4 mixed oxides (as spinel) and NiO onto the Al2O3 (TGO) layer. The formation of detrimental mixed oxides (spinels) on the Al2O3(TGO) layer of nano NiCrAlY/YSZ/nano Al2O3 coating is much lower compared to that of other coatings after 120 h of high temperature oxidation at 1000 °C.  相似文献   

6.
Thin layers restructured by surface melting to approximately 30-μm depth on MCrAlY coatings were produced using the large-area pulsed electron-beam GESA facility. With a beam diameter of up to 10 cm, it is possible to treat large surface areas, with just a few overlapping electron beam pulses. The high cooling rates lead to nanocrystalline structures at the sample surface. Their oxidation properties were studied at 950°C in air. As the surface treatment leads to smooth surfaces, with an RA<1.5 μm, even on formerly rough low-pressure plasma spray (LPPS) samples, the samples can subsequently be coated directly with electron beam physical vapor deposition (EBPVD) thermal barrier coatings (TBC). The growth of the thermally grown oxide (TGO) on such samples was also studied at 950°C in air for up to 5000 h and compared to that of samples without the TBC. The treated samples appeared to have a strongly enhanced oxidation resistance without spinel formation in the α-Al2O3 oxide scale.  相似文献   

7.
High-temperature coating systems, consisting of a René N5 superalloy, a Ni–23Co–23Cr–19Al–0.2Y (at.%) bond coating (BC), and a yttria (7 wt%)-stabilized zirconia (YSZ) thermal barrier coating (TBC), were thermally cycled to failure for seven different controlled pre-oxidation treatments and one commonly employed industrial pre-oxidation treatment to establish the preferred microstructures of the thermally-grown oxide (TGO) on a NiCoCrAlY bond coating after pre-oxidation. It was found that the failure of the coating system occurred along the TGO/BC interface when the TGO attained a critical thickness, except if a NiAl2O4 spinel layer developed contiguous to the TBC/TGO interface. Then, the coating system failed at a smaller TGO thickness along the NiAl2O4/α-Al2O3 interface. The value for the TGO thickness at failure increased for a larger area fraction of Y-rich oxide pegs at the TGO/BC interface after pre-oxidation. A desired slow-growing oxide layer on the BC surface was promoted when the presence of the oxides NiAl2O4, θ-Al2O3, Y3Al5O12 at the TGO surface after pre-oxidation was avoided. The α-Al2O3 layer, which developed adjacent to the BC upon thermal cycling, grew at a low rate if the initial oxide at the onset of oxidation consisted of θ-Al2O3 instead of α-Al2O3. Based on these results a pre-oxidation treatment is proposed for which the lifetime of the entire coating system during service is enhanced.  相似文献   

8.
Thermal barrier coatings (TBCs) provide both thermal insulation and oxidation and corrosion protection to the substrate metal, and their durability is influenced by delamination near the interface between the ceramic topcoat and the metallic bond coat, where a layer of thermally grown oxide (TGO) forms during service exposure. In the present work, the degradation process of a TBC with an air-plasma-spray ZrO2-8 wt.%Y2O3 topcoat and a high-velocity oxy-fuel CoNiCrAlY bond coat was studied, in terms of TGO growth kinetics and aluminum depletion in the bond coat, as well as cracking behavior. The results show that the TGO growth kinetics can be described by a transient oxidation stage with δ3 = k 1 t followed by a steady-state oxidation stage with δ2 = c + k 2 t. Significant aluminum depletion was observed in the bond coat after extended thermal exposure; however, chemical failure of the bond coat did not occur even after the aluminum content near the TGO/CoNiCrAlY interface decreased to 4.5 at.%. A power-law relationship between the maximum crack length in the TBC and the TGO thickness was observed, which may serve as the basis for TBC life prediction.  相似文献   

9.
Thermal barrier coating (TBC) blade specimens with Pt diffusion bond coats were subjected to thermal cycling with periodic measurements of the residual stress in the thermally grown oxide (TGO) using photoluminescence piezospectroscopy. Two distinct stress levels were generally found to coexist in the probed volume, i.e. a high stress (~4 GPa) and a low stress (~500 MPa) level. Both the high and low stress levels were independent of the curvature of the blade surface, in agreement with numerical modelling based on a composite cylinder stress model. The relative contributions of the two stress levels appear to be correlated with the θ-Al2O3 content of the TGO, which was dependent on the position on the blade. The TBCs tended to fail along the TGO/bond coat interface in thermal cycling. This was modified by the presence of mixed transition metal oxides in the TGO. The results are interpreted in terms of a likely failure mechanism.  相似文献   

10.
A combined pre-annealing and pre-oxidation treatment was developed for the processing of partially yttria stabilized (PYSZ) thermal barrier coatings (TBC) on top of NiCoCrAlY bond coatings (BC). To develop this pre-treatment, the influence of the oxygen potential during pre-annealing and pre-oxidation on the life span and failure mechanisms of the entire high temperature coating system upon thermal cycling was investigated. The results of this study showed that the service life of the coating system depended strongly on the composition and microstructure of the thermally grown oxide (TGO) after pre-oxidation. The longer life spans were obtained if the TGO thickened very slowly during thermal cycling due to a large α-Al2O3 grain size. Such a slow-growing TGO corresponded with a pre-treatment for which θ-Al2O3 was formed during pre-oxidation and for which the yttrium was located within a high density of pegs along the TGO/BC interface after pre-oxidation. If the yttrium was present on top of the TGO after pre-oxidation, a thick mixed alumina-zirconia layer formed upon thermal cycling. This mixed oxide layer contributed significantly to the total oxide layer thickness, resulting in short life spans. The formation of NiAl2O4 spinel in between the TBC and the α-Al2O3 should be avoided, since this can lead to premature failure along the spinel/α-Al2O3 interface.  相似文献   

11.
Thermal barrier coatings (TBC) consisting of atmospheric plasma-sprayed ZrO2-8 wt.% Y2O3 and a high velocity oxygen fuel-sprayed metallic bond coat were subjected to CO2 continuous wave laser treatments. The effects of laser power on TBCs were investigated as was the thermally grown oxide (TGO) layer development of all as-sprayed and laser-treated coatings after thermal oxidation tests in air environment for 50, 100, and 200 h at 1100 °C. The effects of laser power on TBCs were investigated. TGO layer development was examined on all as-sprayed and laser-treated coatings after thermal oxidation tests in air environment for 50, 100, and 200 h at 1100 °C. Melted and heat-affected zone regions were observed in all the laser-treated samples. Oxidation tests showed a stable alumina layer and mixed spinel oxides in the TGO layers of the as-sprayed and laser-treated TBCs.  相似文献   

12.
As-fabricated thermal barrier coating (TBC) systems generally consist of a superalloy substrate, a MCrAlY bond coat (M = Ni, Co, Fe), and a ceramic (usually partially stabilized zirconia) top coat. The conventional methods for producing the two coating layers generally derive from thermal spray and physical vapor deposition techniques. Thermal exposure leads to the formation of an additional layer: the thermally grown oxide (TGO) between the bond coat and top coat. In the present work, a TBC system is synthesized through the application of spark plasma sintering (SPS), which provides not only the opportunity to synthesize all three layers at once, but the process is quite rapid and can produce dense layers. More specifically, this paper describes the application of this method to an yttria-stabilized ZrO2 (YSZ) top coat and a NiCrAlY bond coat on a Ni-base Hastelloy X substrate. A one-micron thick Al2O3 TGO layer is also created from the reaction between an Al foil layer inserted in the stack prior to sintering and the ZrO2 in the top coat. The effects of select process conditions are considered. The resulting multi-layer system is characterized with optical microscopy, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), energy dispersive X-ray analysis (EDAX) and X-ray diffraction (XRD). Differential thermal analysis (DTA) is used to investigate the reaction between the Al foil and the YSZ top coat.  相似文献   

13.
The thermally grown oxide (TGO) formed on CMSX-4 coated with Pt-aluminide bond coat was studied by isotopic oxidation and photo-luminescence piezo-spectroscopy (PLPS). It was found that La doping in the CMSX-4 substrate suppressed inward oxygen diffusion along TGO grain boundaries which was the dominant TGO growth mechanism without La doping. The different oxidation mechanisms led to distinct TGO stress distributions and different crystallographic orientations of the α-Al2O3 in the TGO. In the sample without La doping, the residual stress was uniform and the α-Al2O3 crystallites were found to be preferentially orientated with their c-axis in perpendicular to the substrate surface, whereas in the sample with La doping, the residual stress distribution was found to be bi-modal with the existence of low stress zones, and the α-Al2O3 crystallites were preferentially orientated with the c-axis in parallel to the substrate surface. The TGO growth stress was estimated to be ?0.6 GPa (compressive) for the sample without La doping and 0.2 GPa (tensile) for the La-doped sample. Low stress zones are speculated to correspond to local damage caused by the tensile growth stress at high temperature.  相似文献   

14.
Thermal barrier coatings (TBC) are commonly used in modern gas turbines for aeronautic and energy production applications. The conventional methods to fabricate such TBCs are EB-PVD or plasma spray deposition. Recently, the spark plasma sintering (SPS) technique was used to prepare new multilayered coatings. In this study, complete thermal barrier systems were fabricated on single crystal Ni-based superalloy (AM1®) substrate in a one-step SPS process. The lifetime of TBC systems is highly dependent on its ability to form during service a dense, continuous, slow-growing alumina layer (TGO) between an underlying bond coating and a ceramic top coat. In the present paper, we show that such kind of layer (called proto-TGO in the following) can be in situ formed during the SPS fabrication of TBC systems. This proto-TGO is continuous, dense and its nature has been determined using TEM-EDS-SAD and Raman spectroscopy. This amorphous oxide layer in the as-fabricated samples transforms to α-Al2O3 during thermal treatment under laboratory air at 1100 °C. Oxidation kinetics during annealing are in good agreement with the formation of a protective α-Al2O3 layer.  相似文献   

15.
Thermal barrier coatings (TBCs) are extensively used to protect metallic components in applications where the operating conditions include an aggressive environment at high temperatures. The most important factor controlling TBC durability is the nucleation, and subsequent thickening, of a thermally grown oxide (TGO) layer which is formed during high-temperature oxidation. For this reason, the aim of this work is to analyse the TGO microstructure evolution during isothermal oxidation to explain the macroscopic oxidation behaviour. To this end, transmission electron microscopy (TEM) was used to evaluate the TGO fine microstructure. ZrO2(Y2O3) top coat and NiCrAlY bond coating were air plasma sprayed onto an Inconel 600 Ni base alloy. The TBCs were isothermally oxidized in air at 950 and 1050 °C for 24, 48, 72, 144 and 336 h and the principal differences in TGO composition were analysed. α-Al2O3 was the main TGO constituent in the TBC treated at 950 °C. On the other hand, Al was rapidly consumed in the TBC oxidized at 1050 °C leading to the formation of NiAl2O4 spinels, after 72 h exposure, and NiO, after 336 h. The TGO growth kinetics followed a power law, controlled by Al3+ diffusion, in the samples treated at 950 °C. However, two different power laws fitted the TGO growth kinetics in the coatings treated at 1050 °C as the diffusion of Ni2+ is relevant after 72 h exposure.  相似文献   

16.
THE METALLIC BOND COAT is an importantconstituent in a TBC system.It enhances the adhesionof the ceramic thermal barrier layer(the topcoat)to thesubstrate and also provides oxidation protection to thesubstrate metal.The composition of the bond coat,generalized as M-Cr-Al-Y,where M represents Ni,Coand/or Fe,generally allows a layer of alumina(A12O3)to form during high temperature exposure.If acontinuous scale of A12O3forms along the interfacebetween the bond coat and the ceramic to…  相似文献   

17.
The oxidation of electron beam physical vapour deposited thermal barrier coatings with a Pt-enriched γ-Ni + γ′-Ni3Al bond coat was investigated. Due to the growth of the thermally grown oxide (TGO), γ-Ni formed underneath the TGO as a result of Al depletion. Phase characterisation by X-ray diffraction, as well as microstructural observations, indicated that a NiAl2O4 spinel phase formed at the TGO/bond coat interface after prolonged oxidation. It is proposed that the formation of spinel occurs when local cracks present at the interface and the underlying bond coat is Al-depleted. The cracks provide a direct path for oxygen and nickel oxide forms at the bond coat surface. With further oxidation, the spinel forms at the interface through solid state reaction between the TGO and nickel oxide.  相似文献   

18.
The effects of thermally grown oxide (TGO) growth rate and bond coat oxidation behavior on the spallation lives of thermal barrier coatings (TBCs) have been investigated. Yttria partially stabilized zirconia (7YSZ) coatings have been applied to various bond coat/superalloy substrate combinations using the Solution Precursor Plasma Spray (SPPS) process. The coatings have been furnace thermal cycled at 1121 °C, using one hour cycles. A large variation in the spallation lives, from 125 to 1230 cycles, has been observed and are attributed to (a) the spatially averaged TGO growth rate, (b) the maximum localized TGO thickness, (c) the formation of non-alumina oxides with weak interfaces, and (d) the formation of yttrium aluminate stringers in low pressure plasma spray (LPPS) processed bond coat. Of these four factors, the average TGO thickness is the most important. Surprisingly vacuum plasma sprayed bond coated samples consistently had shorter cyclic live compared to air plasma sprayed bond coated samples.  相似文献   

19.
MCrAlY alloy bond coat is widely used in thermal barrier coating (TBC) systems to protect substrates from high-temperature oxidizing environments. However, failure of the ceramic topcoat can occur due to a thermally grown oxide (TGO) that grows at the interface between the bond coat and the topcoat. In this study, the effect of chromate treatment was investigated. Prior to topcoat deposition, a thin film of Cr2O3 was formed on the bond coat surface. High-temperature oxidation tests were carried out, and the oxidation rates were determined by inspection of cross sections. Similar oxidation tests were carried out using MCrAlY powder material assumed to be unmelted particles. As a result, the chromate-treated bond coat showed outstanding oxidation resistance. Calculations that take into account the oxidation of particles in the topcoat indicated the generation of internal stress to cause local fracture of the topcoat.  相似文献   

20.
A modification to the conventional thermal-barrier coating (TBC) system was made. In this study, the low-pressure, plasma-sprayed Co-29Cr-6Al-1Y bond coat received a duplex pretreatment of bond-coat pre-aluminizing and pre-oxidation prior to overlaying the air-plasma sprayed ZrO2-8 wt.% Y2O3 top coat. The effects of this treatment on the properties of the TBC system were evaluated by thermal-cyclic test at 1050° C in air. The results of cyclic-oxidation tests showed that the proposed processes could remarkably improve the performance of ZrO2-8 wt.% Y2O3/Co-29Cr-6Al-1Y TBC. The improvement was attributed to a modification of bond-coat oxides and the associated reduction of the oxidation rate of the MCrAlY bond coat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号