首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although both the CD4 and CD8 molecules enhance antigen responsiveness mediated by the T cell receptor (TCR), it is not known whether CD4 and CD8 initiate similar or different intracellular signals when they act as coreceptors. To characterize the early signals transmitted by CD4 and CD8, both CD4 and CD8 alpha were expressed in the same murine T cell hybridoma. In the double positive transfectants, CD4 and CD8 associated with equal amounts of p56lck (Lck), and both molecules enhanced interleukin 2 (IL-2) production equivalently when cross-linked with suboptimal levels of anti-TCR antibody. However, in an in vitro kinase assay, cross-linking CD4 initiated fourfold greater kinase activity compared with CD8 cross-linking. In the same assay, when CD4 or CD8 was cross-linked to the TCR, novel phosphorylated proteins were found associated with the TCR/CD4 complex but not with the TCR/CD8 complex. Consistent with this data, antiphosphotyrosine immunoblotting revealed greater tyrosine phosphorylation of intracellular substrates after TCR/CD4 cross-linking compared with TCR/CD8 cross-linking. Additionally, a specific protein kinase C inhibitor (RO318220) inhibited CD8-mediated enhancement of IL-2 production far more effectively than CD4-mediated enhancement. Thus, it appears that CD8 alpha may depend more on a protein kinase C-mediated signaling pathway, whereas CD4 may rely on greater tyrosine kinase activation. Such differential signaling via CD4 and CD8 has implications for thymic ontogeny and T cell activation.  相似文献   

2.
The adoptive transfer of naive CD4(+) T cell receptor (TCR) transgenic T cells was used to investigate the mechanisms by which the adjuvant lipopolysaccharide (LPS) enhance T cell clonal expansion in vivo. Subcutaneous administration of soluble antigen (Ag) resulted in rapid and transient accumulation of the Ag-specific T cells in the draining lymph nodes (LNs), which was preceded by the production of interleukin (IL)-2. CD28-deficient, Ag-specific T cells produced only small amounts of IL-2 in response to soluble Ag and did not accumulate in the LN to the same extent as wild-type T cells. Injection of Ag and LPS, a natural immunological adjuvant, enhanced IL-2 production and LN accumulation of wild-type, Ag-specific T cells but had no significant effect on CD28-deficient, Ag-specific T cells. Therefore, CD28 is critical for Ag-driven IL-2 production and T cell proliferation in vivo, and is essential for the LPS-mediated enhancement of these events. However, enhancement of IL-2 production could not explain the LPS-dependent increase of T cell accumulation because IL-2-deficient, Ag-specific T cells accumulated to a greater extent in the LN than wild-type T cells in response to Ag plus LPS. These results indicate that adjuvants improve T cell proliferation in vivo via a CD28-dependent signal that can operate in the absence of IL-2.  相似文献   

3.
Clonal activation of CD4+ and CD8+ T lymphocytes depends on binding of peptide-major histocompatibility complex (MHC) molecule complexes by their alpha/beta receptors, eventually resulting in sufficient aggregation to initiate second messenger generation. The nature of intracellular signals resulting from such T cell receptor (TCR) occupancy is believed to be independent of the specific structure of the ligand being bound, and to vary quantitatively, not qualitatively, with the concentration of ligand offered and the affinity of the receptor for the peptide-MHC molecule complex. In contrast to the expectations of this model, the analysis of the response of a T helper type 1 clone to mutant E alpha E beta k molecules in the absence or presence of a peptide antigen revealed that peptide inhibited the interleukin 2 (IL-2) response to an otherwise allostimulatory mutant form of this MHC class II molecule. The inhibition was not due to competition for formation of alloantigen, it required TCR recognition of peptide-mutant MHC molecule complexes, and it decreased IL-2 production without affecting receptor-dependent IL-3, IL-2 receptor alpha, or size enlargement responses. This preferential reduction in IL-2 secretion could be correlated with the costimulatory signal dependence of this cytokine response, but could not be overcome by crosslinking the CD28 molecule on the T cell. These results define a new class of TCR ligands with mixed agonist/antagonist properties, and point to a ligand-related variation in the quality of clonotypic receptor signaling events or their integration with other signaling processes. It was also found that a single TCR ligand showed greatly different dose thresholds for the elicitation of distinct effector responses from a cloned T cell population. The observations that changes in ligand structure can result in qualitative alterations in the effects of receptor occupancy and that quantitative variations in ligand density can be translated into qualitative differences in T cell responses have important implications for models of intrathymic selection and control of the results of active immunization.  相似文献   

4.
The effect of CD4 expression on the activation threshold of mouse T lymphocytes has been analysed. To do this, the authors studied the response to antigen and other T cell receptor (TCR) ligands in a series of CD4- mutants obtained from the SR.D10 clone. This non-tumour clone spontaneously arose from the Th2 clone D10.G4.1, and characteristically shows a low threshold for antigen activation as well as reactivity to syngeneic antigen presenting cells (APC). Although SR.D10 CD4- mutant cells can be stimulated by antigen, they need higher antigen concentration or more APC than SR.D10 or CD4 transfectants to yield optimal antigen responses. Furthermore, CD4- clones are not activated by syngeneic APC or by clonotypic antibodies. These effects do not correlate with changes in the expression of cell surface molecules implicated in antigen recognition, like TCR/CD3, CD2, LFA-1, or CD45, or with lower p56lck or p59fyn activity in the mutant cells. Since inhibition experiments using anti-CD4 antibodies have previously shown that activation of the CD4+ T cell clone D10.G4.1 by antigen or alloantigens is largely dependent on CD4, our results indicate that activation by antigen-plus self MHC may become CD4-independent if the activation threshold is lowered enough, e.g. in cells like SR.D10. Expression of CD4 further lowers the activation threshold of the cells, allowing the detection of low-affinity TCR reactivities like those directed at self MHC. Moreover, by using anti-TCR/CD3 antibodies, the authors have confirmed the importance of CD4-associated tyrosine kinase activity in early TCR/CD3 signalling in this Th2 cell line, as (1) upon TCR/CD3 ligation, tyrosine phosphorylation is detected only in those CD3 chains co-precipitating with CD4; and (2) CD4 expression is needed for efficient early tyrosine phosphorylation and detectable p56lck-TCR co-precipitation.  相似文献   

5.
A population of human T cells expressing an invariant V alpha 24 J alpha Q T cell antigen receptor (TCR) alpha chain and high levels of CD161 (NKR-P1A) appears to play an immunoregulatory role through production of both T helper (Th) type 1 and Th2 cytokines. Unlike other CD161(+) T cells, the major histocompatibility complex-like nonpolymorphic CD1d molecule is the target for the TCR expressed by these T cells (V alpha 24(invt) T cells) and by the homologous murine NK1 (NKR-P1C)+ T cell population. In this report, CD161 was shown to act as a specific costimulatory molecule for TCR-mediated proliferation and cytokine secretion by V alpha 24(invt) T cells. However, in contrast to results in the mouse, ligation of CD161 in the absence of TCR stimulation did not result in V alpha 24(invt) T cell activation, and costimulation through CD161 did not cause polarization of the cytokine secretion pattern. CD161 monoclonal antibodies specifically inhibited V alpha 24(invt) T cell proliferation and cytokine secretion in response to CD1d+ target cells, demonstrating a physiological accessory molecule function for CD161. However, CD1d-restricted target cell lysis by activated V alpha 24(invt) T cells, which involved a granule-mediated exocytotic mechanism, was CD161-independent. In further contrast to the mouse, the signaling pathway involved in V alpha 24(invt) T cell costimulation through CD161 did not appear to involve stable association with tyrosine kinase p56(Lck). These results demonstrate a role for CD161 as a novel costimulatory molecule for TCR-mediated recognition of CD1d by human V alpha 24(invt) T cells.  相似文献   

6.
The role of CD4 in T cell activation has been attributed to its capacity to increase the avidity of interaction with APC and to shuttle associated Lck to the TCR/CD3 activation complex. The results presented in this study demonstrate that ligation of CD4 inhibits ongoing responses of preactivated T cells. Specifically, delayed addition of CD4-specific mAb is shown to inhibit Ag- or mAb-induced responses of both primary T cells and T cell clonal variants. The Ag responses of the latter are independent of the adhesion provided by CD4; thus the observed inhibition is not due to blocking CD4-MHC interactions. Further, analysis of the clonal variants demonstrates that CD4-associated Lck is not essential for the inhibition observed, as anti-CD4 inhibits responses of clonal variants, expressing a form of CD4 unable to associate with Lck (double cysteine-mutated CD4). The inhibition is counteracted by the addition of exogenous IL-2, demonstrating that the block is not due to a lesion in IL-2 utilization, rather its production. It is demonstrated that the delayed addition of anti-CD4 results in a rapid reduction in steady-state levels of IL-2 mRNA in both primary T cells and clonal variants.  相似文献   

7.
The efficiency and magnitude of T cell responses are influenced by ligation of the co-stimulatory receptor CD28 by B7 molecules expressed on antigen-presenting cells (APC). In contrast to most previous studies in which agonistic anti-TCR/CD3 and anti-CD28 antibodies were employed, here we have investigated the contribution of CD28 to T cell activation under physiological conditions of antigen presentation. Jurkat T cells and primary T cells from TCR-transgenic mice stimulated with superantigen and antigen, respectively, presented by B7-expressing APC were utilized. In both systems we show that inhibiting CD28/B7 interaction resulted in impaired TCR-induced tyrosine phosphorylation of the signal-transducing zeta chain and ZAP-70. Consistent with a blockade of TCR-proximal signaling events, Jurkat cells stimulated in the absence of CD28 ligation were found to have strongly diminished tyrosine phosphorylation of cellular substrates and downstream signaling pathways such as Ca2+/calcineurin, ERK/MAPK and JNK. Our results provide evidence for a role of CD28 in enhancing TCR signaling capacity during the earliest stages of T cell:APC interaction.  相似文献   

8.
While little is known about their activation requirements and function, the intraepithelial T cells of the murine vagina express TCR complexes in which the antigen recognition components and the signaling components have unusual features. These vaginal T cells express an invariant V gamma 4/V delta 1 TCR and appear to be the only intraepithelial gamma delta T cells that exclusively use FcR gamma chains in their TCR complex. To further characterize the vaginal gamma delta T cells we isolated them from normal mice and from mice injected systemically with an activation-inducing dose of anti-TCR mAb. The isolated gamma delta T cells were examined by flow cytometry for their surface expression of a panel of adhesion, proteins, activation antigens and cellular interaction molecules (CD44, CD62L, CD45RB, LFA-1, CD2 and CD28). The patterns of expression observed indicate that the vaginal gamma delta T cells of normal mice show the phenotype of effector T cells. The adhesion/co-stimulatory molecules CD28 and CD2 were not detected on vaginal gamma delta T cells, an interesting finding since the absence of CD2 from other T cells has been suggested to result in anergy. However, vaginal gamma delta T cells are responsive to TCR-mediated signals since injection of normal mice with pan-anti-TCR antibody or stimulating anti-gamma delta TCR antibody resulted in an increase in cell number and increased expression of transferrin and IL-2 receptors. These results indicate that vaginal gamma delta T cells might utilize other co-stimulatory molecules, if any, in connection with TCR-induced activation and differentiation. While the physiological function of vaginal gamma delta T cells remains unknown, the expression of an invariant V gamma 4/V delta 1 TCR, their exclusive use of gamma chain homodimers in their TCR, and the absence of CD2 and CD28 co-stimulatory molecules are a novel combination of properties that suggests specialized functional properties. Although vaginal gamma delta T cells share some features in common with gamma delta T cells that reside in other epithelial tissues, such as skin and intestine, the present studies provide additional evidence that vaginal gamma delta T cells are a highly specialized and distinct T cell population.  相似文献   

9.
Costimulation was originally defined and characterized during primary T cell activation. The signaling events that regulate subsequent antigen encounters by T cells are less well defined. In this study we examined the role of CD30 in T cell activation and defined factors that regulate expression of CD30 on T cells. We demonstrate that CD30 expression is restricted to activated T cells and regulated by CD28 signal transduction. In contrast to CD28-expressing TCR Tg cells, CD28-deficient TCR Tg cells did not express CD30 when cultured with peptide and APCs. However, rIL-4 reconstituted CD30 expression on CD28-deficient TCR Tg cells. Blockade of CD28 interactions or depletion of IL-4 inhibited the induction of CD30, suggesting that both CD28 and IL-4 play important roles in the induction of CD30 expression on wild-type cells. However, CD28 signaling did not up-regulate CD30 expression solely through its ability to augment IL-4 production because IL-4-deficient T cells stimulated with anti-CD3 and anti-CD28 expressed CD30. Induction of CD30 in the absence of IL-4 was not due to the IL-4-related cytokine IL-13. CD30, when expressed on an activated T cell, can act as a signal transducing receptor that enhances the proliferation of T cells responding to CD3 crosslinking. Collectively, the data suggest that T cell expression of CD30 is dependent on the presence of CD28 costimulatory signals or exogenous IL-4 during primary T cell activation. Once expressed on the cell surface, CD30 can serve as a positive regulator of mature T cell function.  相似文献   

10.
Signals delivered through the beta/gp33 (pre-TCR) and T-cell receptor alpha beta control proliferation and differentiation of thymocytes at two distinct control points of T cell maturation. Interaction between T-cell receptor (TCR) and peptide/MHC complex induce signaling pathways leading to activation of T cell. Signal transduction involves CD3 zeta phosphorylation by Lck tyrosine kinase and activation of ZAP-70 which regulates signaling pathways through PKC, Ca++ and Ras/Raf kinase cascade. Appropriate response of cell is preceded by integration of different signals in the nucleus.  相似文献   

11.
The mechanism of self-tolerance in the CD4(+) T cell compartment was examined in a double transgenic (Tg) model in which T cell receptor (TCR)-alpha/beta Tg mice with specificity for the COOH-terminal peptide of moth cytochrome c in association with I-Ek were crossed with antigen Tg mice. Partial deletion of cytochrome-reactive T cells in the thymus allowed some self-specific CD4(+) T cells to be selected into the peripheral T cell pool. Upon restimulation with peptide in vitro, these cells upregulated interleukin (IL)-2 receptor but showed substantially lower cytokine production and proliferation than cells from TCR Tg controls. Proliferation and cytokine production were restored to control levels by addition of saturating concentrations of IL-2, consistent with the original in vitro definition of T cell anergy. However, the response of double Tg cells to superantigen stimulation in the absence of exogenous IL-2 was indistinguishable from that of TCR Tg controls, indicating that these self-reactive cells were not intrinsically hyporesponsive. Measurement of surface expression of Tg-encoded TCR alpha and beta chains revealed that cells from double Tg mice expressed the same amount of TCR-beta as cells from TCR Tg controls, but only 50% of TCR-alpha, implying expression of more than one alpha chain. Naive CD4(+) T cells expressing both Tg-encoded and endogenous alpha chains also manifested an anergic phenotype upon primary stimulation with cytochrome c in vitro, suggesting that low avidity for antigen can produce an anergic phenotype in naive cells. The carboxyfluorescein diacetate succinimidyl ester cell division profiles in response to titered peptide +/- IL-2 indicated that expression of IL-2 receptor correlated with peptide concentration but not TCR level, whereas IL-2 production was profoundly affected by the twofold decrease in specific TCR expression. Addition of exogenous IL-2 recruited double Tg cells into division, resulting in a pattern of cell division indistinguishable from that of controls. Thus, in this experimental model, cells expressing more than one alpha chain escaped negative selection to a soluble self-protein in the thymus and had an anergic phenotype indistinguishable from that of low avidity naive cells. The data are consistent with the notion that avidity-mediated selection for self-reactivity in the thymus may lead to the appearance of anergy within the peripheral, self-reactive T cell repertoire, without invoking the induction of hyporesponsiveness to TCR-mediated signals.  相似文献   

12.
The proliferative capacity of T cells infiltrating human tumors is known to be impaired, possibly through their interaction with tumor. Here we demonstrate that soluble products derived from renal cell carcinoma (RCC-S) explants but not normal kidney can inhibit an IL-2-dependent signaling pathway that is critical to T cell proliferation. A major target of the immunosuppression was the IL-2R-associated protein tyrosine kinase, Janus kinase 3 (Jak3). RCC-S suppressed basal expression of Jak3 and its increase following stimulation with anti-CD3/IL-2. Jak3 was most sensitive to suppression by RCC-S; however, reduction in expression of p56(lck), p59(fyn), and ZAP-70 was observed in some experiments. Expression of other signaling elements linked to the IL-2R (Jak1) and the TCR (TCR-zeta, CD3-epsilon, and phospholipase C-gamma) were minimally affected. In naive T cells, RCC-S also partially blocked induction of IL-2R alpha-, beta- and gamma-chain expression when stimulating via the TCR/CD3 complex with anti-CD3 Ab. To determine whether RCC-S suppressed IL-2-dependent signaling, primed T cells were employed since RCC-S had no effect on IL-2R expression but did down-regulate Jak3 expression and, to a lesser degree, p56(lck) and p59(fyn). Reduction in Jak3 correlated with impaired IL-2-dependent proliferation and signal transduction. This included loss of Jak1 kinase tyrosine phosphorylation and no induction of the proto-oncogene, c-Myc. These findings suggest that soluble products from tumors may suppress T cell proliferation through a mechanism that involves down-regulation of Jak3 expression and inhibition of IL-2-dependent signaling pathways.  相似文献   

13.
Itk is a member of the Btk/Tec/Itk family of nonreceptor protein tyrosine kinases (PTKs), and has been implicated in T cell antigen receptor (TCR) signal transduction. Lck and Fyn are the Src-family nonreceptor PTKs that are involved in TCR signaling. To address the question of how these members of different families of PTKs functionally contribute to T cell development and to T cell activation, mice deficient for both Itk and either Lck or Fyn were generated. The Itk/Lck doubly deficient mice exhibited a phenotype similar to that of Lck-deficient mice. The phenotype of the Itk/Fyn doubly deficient mice was similar to that of Itk deficient mice. However the Itk/Fyn doubly deficient mice exhibited a more severe defect in TCR-induced proliferation of thymocytes and peripheral T cells than did mice deficient in either kinase alone. These data support the notion that Itk and Fyn both make independent contributions to TCR-induced T cell activation.  相似文献   

14.
Previous studies have demonstrated that a mAb that recognizes the leukocyte surface Ag V7 inhibits TCR/CD3-dependent T cell activation. In the current study, we demonstrate that in addition to inhibiting T cell proliferation and IL-2 production, anti-V7 blocks tyrosine phosphorylation of TCR/CD3-associated substrates. PMA overcomes this effect, and both PMA and exogenous IL-2 overcome anti-V7-mediated inhibition of T cell proliferation and IL-2 production. T cells stimulated with anti-CD3 in the absence of CD28 or V7 ligation become unresponsive (anergic) to restimulation with anti-CD3; T cells primed in the presence of either anti-V7 or anti-CD28 retain their ability to respond to restimulation with anti-CD3. When T cells are primed in the presence of optimal concentrations of anti-V7 and anti-CD28 Abs, they proliferate normally, indicating that the costimulatory signals generated through CD28 dominate the inhibitory signals generated through V7. However, as the anti-CD28 stimulus is diluted, the V7 effect becomes dominant and proliferation is inhibited. Thus, although both anti-V7 and anti-CD28 Abs prevent anergy, they induce distinct, competing intracellular signals. Wortmannin, which blocks phosphoinositol 3-kinase-dependent signaling, has little effect on V7-mediated inhibition, while herbimycin, an inhibitor of tyrosine kinase, synergizes with anti-V7 to inhibit T cell activation. On the basis of these findings, V7-mediated signals appear to inhibit TCR-dependent tyrosine kinases that are required for IL-2 production and cellular proliferation.  相似文献   

15.
The central role of type-2 helper T (Th2) cells in the development of allergic responses and immune responses against helminthic parasites is well documented. The differentiation of Th2 cells from naive T cells requires both the recognition of antigen by T cell antigen receptors (TCR) and the activation of downstream signal-transduction molecules of the interleukin 4 receptor (IL-4R) pathway, including Jak1, Jak3, and STAT6. Little is known, however, about how these two distinct pathways cooperate with each other to induce Th2 cells. Here, we use a T cell-specific H-Ras-dominant-negative transgenic mouse to show that TCR-mediated activation of the Ras/mitogen-activated protein kinase pathway alters IL-4R function and is required for Th2 cell differentiation. The enhancement of IL-4R signaling seems to be a consequence of both direct "crosstalk" with the TCR signaling pathway and increased protein expression of downstream signaling molecules of the IL-4R pathway. Therefore, successful Th2 differentiation depends on the effectiveness of the TCR-mediated activation of the Ras/mitogen-activated protein kinase pathway in modifying the IL-4R-mediated signaling pathway.  相似文献   

16.
17.
Although dispensable, costimulation through CD28 facilitates activation of na?ve T lymphocytes. CD28 engagement led to the redistribution and clustering of membrane and intracellular kinase-rich raft microdomains at the site of T cell receptor (TCR) engagements. Although not affecting TCR down-regulation, this process led to higher and more stable tyrosine phosphorylation of several substrates and higher consumption of Lck. These results may provide a general mechanism for amplifying receptor signaling by reorganization of membrane microdomains.  相似文献   

18.
T-cell antigen receptor (TCR) engagement results in sequential activation of the Src protein tyrosine kinases (PTKs) Lck and Fyn and the Syk PTKs, ZAP-70 and Syk. While the Src PTKs mediate the phosphorylation of TCR-associated signaling subunits and the phosphorylation and activation of the Syk PTKs, the lack of a constitutively active Syk PTK has prohibited the analysis of Lck function downstream of these initiating signaling events. We describe here the generation of an activated Syk family PTK by substituting the kinase domain of Syk for the homologous region in ZAP-70 (designated as KS for kinase swap). Expression of the KS chimera resulted in its autophosphorylation, the phosphorylation of cellular proteins, the upregulation of T-cell activation markers, and the induction of interleukin-2 gene synthesis in a TCR-independent fashion. The KS chimera and downstream ZAP-70 or Syk substrates, such as SLP-76, were still phosphorylated when expressed in Lck-deficient JCaM1.6 T cells. However, expression of the KS chimera in JCaM1.6 cells failed to rescue downstream signaling events, demonstrating a functional role for Lck beyond the activation of the ZAP-70 and Syk PTKs. These results indicate that downstream TCR signaling pathways may be differentially regulated by ZAP-70 and Lck PTKs and provide a mechanism by which effector functions may be selectively activated in response to TCR stimulation.  相似文献   

19.
Because elevated intracellular cAMP suppresses T cell receptor (TCR)-mediated effector activity and/or proliferation in response to antigen but does not always affect IL-2-stimulated proliferation, the effects of cAMP on a T lymphocyte response to antigen resemble antigen-induced anergy. To test the hypothesis that elevated cAMP induces anergy in T lymphocytes, we have precultured murine Th1 clones responsive to porcine myelin basic protein (PMBP) with dibutyryl cyclic AMP (dbcAMP) or forskolin and subsequently removed the dbcAMP or forskolin and measured the proliferative response of the clones to antigen and antigen-presenting cells (APC) in the presence or absence of exogenously added interleukin-2 (IL-2). Cells precultured with dbcAMP or forskolin for 3 days did not proliferate or produce IL-2 in response to antigen and APC, but did proliferate to antigen and APC in the presence of IL-2. Cells that had not been stimulated recently with antigen/APC or IL-2 were not affected by dbcAMP, while cells stimulated recently with antigen/APC and IL-2 were susceptible to the anergizing effect of dbcAMP. These observations support the hypothesis that elevation in intracellular cAMP in antigen-activated Th1 clones, prior to subsequent culture with antigen, induces a state of anergy.  相似文献   

20.
Cytotoxic T lymphocyte-associated molecule-4 (CTLA-4) is a cell surface receptor expressed on activated T cells that can inhibit T cell responses induced by activation of the TCR and CD28. Studies with phosphorylated peptides based on the CTLA-4 intracellular domain have suggested that tyrosine phosphorylation of CTLA-4 may regulate its interactions with cytoplasmic proteins that could determine its intracellular trafficking and/or signal transduction. However, the kinase(s) that phosphorylate CTLA-4 remain uncharacterized. In this report, we show that CTLA-4 can associate with the Src kinases Fyn and Lck and that transfection of Fyn or Lck, but not the unrelated kinase ZAP70, can induce tyrosine phosphorylation of CTLA-4 on residues Y201 and Y218. A similar pattern of tyrosine phosphorylation was found in pervanadate-treated Jurkat T cells stably expressing CTLA-4. Phosphorylation of CTLA-4 Y201 in Jurkat cells correlated with cell surface accumulation of CTLA-4. CTLA-4 phosphorylation induced the association of CTLA-4 with the tyrosine phosphatase SHP-2, but not with phosphatidylinositol 3-kinase. In contrast, Lck-induced phosphorylation of CD28 resulted in the recruitment of phosphatidylinositol 3-kinase, but not SHP-2. These findings suggest that phosphorylation of CD28 and CTLA-4 by Lck activates distinct intracellular signaling pathways. The association of CTLA-4 with Src kinases and with SHP-2 results in the formation of a CTLA-4 complex with the potential to regulate T cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号