首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Previous studies have shown that the leukocyte integrin CR3 (CD11b/CD18) is physically associated with the urokinase-type plasminogen activator receptor (uPAR;CD87), a glycosyl-phosphatidylinositol (GPI)-linked protein, in resting neutrophil membranes. We now show that uPAR-to-CR3 interactions are reversible, correlating with cell shape. Neutrophils were first labeled with fluorescein conjugates of anti-CR3 F(ab')2 fragments followed by capping using a second-step F(ab')2 directed against murine F(ab')2s. Cells were then probed using rhodamine-conjugated anti-uPAR F(ab')2s. Although uPAR co-caps with CR3 on resting cells, uPAR was found to dissociate or "uncap" coincident with spontaneous cell polarization for migration. CR3 caps transformed into uropods while uPAR accumulated at lamellipodia of polarized cells. Capping was unnecessary for the observed distribution of CR3 and uPAR since the anti-CR3 and anti-uPAR F(ab')2s traffic to the uropod and lamellipodium, respectively, during polarization of uncapped cells. These receptors reassociate when cells return to a spherical morphology. In contrast to uPAR, Fc gamma RIIIB did not dissociate from CR3 caps during cell polarization. Resonance energy transfer (RET) microscopy was used to image the spatial distribution of RET and to follow the kinetics of association and dissociation. Initial levels of RET dramatically fell during cell polarization, but did not change on cells fixed with paraformaldehyde. Receptor reassociation was a biphasic process with initial reassociation about the perimeter of a cap, followed by a plateau and a slower rise in RET within a cap. We suggest that cells regulate receptor-receptor associations depending upon their physiologic activities.  相似文献   

3.
4.
The proportion of CD4- CD8- double-negative (DN) alpha beta T cells is increased both in the thymus and in peripheral lymphoid organs of TCR alpha chain-transgenic mice. In this report we have characterized this T cell population to elucidate its relationship to alpha beta and gamma delta T cells. We show that the transgenic DN cells are phenotypically similar to gamma delta T cells but distinct from DN NK T cells. The precursors of DN cells have neither rearranged endogenous TCR alpha genes nor been negatively selected by the MIsa antigen, suggesting that they originate from a differentiation stage before the onset of TCR alpha chain rearrangements and CD4/CD8 gene expression. Neither in-frame V delta D delta J delta nor V gamma J gamma rearrangements are over-represented in this population. However, since peripheral gamma delta T cells with functional TCR beta gene rearrangements have been depleted in the transgenics, we propose that the transgenic DN population, at least partially, originates from the precursors of those cells. The present data lend support to the view that maturation signals to gamma delta lineage-committed precursors can be delivered via TCR alpha beta heterodimers.  相似文献   

5.
Although the incidence and prognosis of infectious endocarditis have remained relatively stable for many years, this disease has recently undergone major modifications of its aetiological and bacteriological profiles, and has benefited from progress in echocardiographic techniques. New diagnostic criteria have been proposed and considerable therapeutic progress has been accomplished, in both medical (antibiotic therapy) and surgical (conservative surgery, homografts) modalities.  相似文献   

6.
T cell repertoire selection processes involve intracellular signaling events generated through the TCR. The CD4 and CD8 coreceptor molecules can act as positive regulators of TCR signal transduction during these developmental processes. In this report, we have used TCR transgenic mice to determine whether TCR signaling can be modulated by the CD8 coreceptor molecule. These mice express on the majority of their T cells a TCR specific for the male (H-Y) Ag presented by the H-2Db MHC class I molecule. We show that CD4-CD8-, but not CD4-CD8+, thymocytes expressing the H-Y TCR responded with high intracellular calcium fluxes to TCR/CD3 stimulation without extensive receptor cross-linking. To examine the effects of CD8 expression on intracellular signaling responses in the CD4-CD8- cells, the H-Y TCR transgenic mice were mated with transgenic mice that constitutively expressed the CD8 alpha molecule on all T cells. The expression of the CD8 alpha alpha homodimer in the CD4-CD8-thymocytes led to impaired intracellular calcium responses and less efficient protein tyrosine phosphorylation of substrates after TCR engagement. In male H-2b H-Y transgenic mice, the majority of thymocytes have been deleted with the surviving cells expressing a high density of the transgenic TCR and exhibiting either a CD4-CD8- or CD4-CD8lo phenotype. It has been postulated that these cells escaped deletion by down-regulating the CD8 molecule. In the H-Y TCR/CD8 alpha double transgenic male mice, the CD4-CD8lo cells were completely eliminated as a result of CD8 alpha expression. However, the CD4-CD8- T cells were not deleted despite normal levels of the CD8 alpha transgene expression. These results suggest that the CD4-CD8- thymocytes may not be susceptible to the same deletional mechanisms as other thymocytes expressing TCR-alpha beta.  相似文献   

7.
The CD3 complex found associated with the T cell receptor (TCR) is essential for signal transduction following TCR engagement. During T cell development, TCR-mediated signalling promotes the transition from one developmental stage to the next and controls whether a thymocyte undergoes positive or negative selection. The roles of particular CD3 components in these events remain unclear. Indeed, it is unknown whether they have specialized or overlapping roles. However, the multiplicity of CD3 components and their evolutionary conservation suggest that they serve distinct functions. Here the developmental requirement for the CD3 delta chain is analyzed by generating a mouse line specifically lacking this component (delta-/- mice). Strikingly, CD3 delta is shown to be differentially required during development. In particular, CD3 delta is not needed for steps in development mediated by pre-TCR or gamma delta TCR, but is required for further development of thymocytes expressing alpha beta TCR. Absence of CD3 delta specifically blocks the thymic selection processes that mediate the transition from the double-positive to single-positive stages of development.  相似文献   

8.
Several constitutively activating mutations have been demonstrated in the sixth transmembrane helix of the human LH receptor (hLHR) in boys with gonadotropin-independent precocious puberty. In the current study, we examined two unrelated Brazilian boys with gonadotropin-independent precocious puberty caused by two different heterozygous activating mutations of the hLHR. Direct sequencing of the entire exon 11 of the hLHR revealed a heterozygous substitution of T for G at nucleotide 1370, that converts Leu 457 to Arg in the third transmembrane helix of the hLHR in one affected boy. His biological parents had a normal hLHR gene sequence, establishing the sporadic nature of this novel Leu457Arg mutation. Human embryonic 293 cells expressing hLHR mutant (L457R) or hLHR wild-type bound CG with high affinity. However, cells expressing hLHR(L457R) exhibited significantly higher basal levels of cAMP (7- to 14-fold) than cells expressing the wild-type receptor, indicating constitutive activation of hLHR(L457R). Basal levels of cAMP in hLHR(L457R)-expressing cells were, nonetheless, not as great as the levels of cAMP produced by hLHR wild-type-expressing cells incubated with a saturating concentration of CG. Furthermore, cells expressing hLHR(L457R) were unresponsive to further stimulation by CG. This finding was confirmed in the patient by lack of an increase in serum testosterone after CG stimulation. These results suggest that the conformation of hLHR(L457R) mutant represents a different activated receptor state (R*) than the agonist-occupied wild-type receptor. We also identified the previously described Ala568Val mutation in the third intracellular loop of the LHR in the other affected African-Brazilian boy and his normal prepubertal sister, suggesting the inherited form of precocious puberty in this boy. We conclude that the third transmembrane helix is a potential area for activating mutations of the hLHR that cause male precocious puberty.  相似文献   

9.
The co-stimulatory role of B7/CD28 interactions is important in promoting T cell activation. Very little is known about the intracellular events that follow CD28 engagement although recent evidence has implicated coupling of CD28 to a protein tyrosine kinase signal transduction pathway. In this study we have investigated the putative role of D-3 phosphoinositides as mediators of CD28 receptor signaling, since phosphoinositide (PI) 3-kinase, the enzyme responsible for D-3 phosphoinositide formation, is a known substrate for protein tyrosine kinases associated with certain T cell surface receptors such as CD4 and interleukin-2 receptor. The lipid products of PI 3-kinase activity have been suggested to play a role in mitogenic signaling and growth regulation in other cells. Chinese hamster ovary cells (CHO) previously transfected with B7 cDNA, induced time-dependent elevation above basal levels of phosphatidylinositol(3,4)-bisphosphate (PtdIns(3,4)P2) and PtdIns(3,4,5)P3, while parental CHO cells that did not express B7 had no effect on these lipids. Moreover, the elevation of these same lipids by CD3 ligation was potentiated in an additive manner by CHO-B7+ but not by CHO-B7- cells. CHO-B7+ and CHO-B7- cells did not activate phospholipase C as evidenced by their inability to modulate basal or CD3-induced changes in the levels of phosphatidic acid or D-4 and D-5 phosphoinositides. These data imply that PI 3-kinase but not phospholipase C, may be an important signal transduction molecule with respect to CD28-mediated co-stimulation and T cell activation following ligation by B7.  相似文献   

10.
Anti-CD3 monoclonal antibodies (MoAbs) and glucocorticoid hormones induce apoptosis in immature thymocytes and peripheral T lymphocytes. This process is inhibited by a number of growth factors, including interleukin-2 (IL-2), IL-3, and IL-4, as well as by triggering of the adhesion molecule CD44, which would indicate that signals generated by membrane receptors can modulate the survival of lymphoid cells. To investigate whether triggering of CD2 may also affect apoptosis in lymphoid cells, we analyzed the effect of stimulation with anti-CD2 MoAbs on T-cell apoptosis induced by two stimuli, anti-CD3 MoAbs and dexamethasone (DEX), using a hybridoma T-cell line and a T-helper cell clone. The results show that CD2 engagement decreased anti-CD3 MoAb-induced apoptosis, but did not influence DEX-induced cell death. Furthermore, the decrease appeared to be related to the expression of Fas/APO-1 (CD95) and Fas-ligand (Fas-L). In fact, we show that CD2 stimulation inhibits apoptosis by preventing the CD3-induced upregulation of Fas and Fas-L in a Fas-dependent experimental system. These data suggest that a costimulatory molecule may control a deletion pathway and may therefore contribute to the regulation of peripheral tolerance.  相似文献   

11.
12.
The transfer of alpha/beta T cell receptor (TCR) genes into T lymphocytes or their precursors could provide a means to increase frequency of tumor- or pathogen-specific cytotoxic T lymphocytes. To begin to address this possibility, we have used class I MHC-restricted alpha/beta TCR cDNAs to develop a retroviral TCR expression vector. Alpha- and beta-chain cDNAs were inserted into a derivative of the LN series of retroviral vectors, with the retroviral LTR directing expression of TCR-beta and an internal cytomegalovirus promoter/enhancer driving TCR-alpha expression. The variable region fragments can be replaced using unique restriction sites that have been introduced into the proximal constant regions. We have used this vector system to transfer two different pairs of alpha/beta TCR genes into an alpha- and beta-chain-deficient T cell hybridoma. TCR- hybridoma cells were transduced by coculture with pools of virus-producing cells, and fluorescence-activated cell sorting was used to enrich for cells expressing the transduced TCR. Transduction with either alpha/beta TCR restores stable, long-lived expression of the alpha/beta TCR complex. TCR-mediated signal transduction is also reconstituted, as demonstrated by the ability of transduced cells to secrete IL-2 following stimulation with Vbeta-specific antibodies. Our results suggest that alpha/beta T cell receptor gene transfer could provide a basis for new approaches to immunotherapy, and that further studies examining the in vivo fate of transduced TCR are possible.  相似文献   

13.
The majority of murine Thy-1+ dendritic epidermal T cells (DETC) express virtually identical TCR encoded by V gamma 5 and V delta 1 genes and are derived from early fetal thymic precursors. However, not consistent with this notion is an early finding that DETC arise continuously from bone marrow (BM) precursors by a thymus-independent mechanism. To address this issue, donor-type DETC were characterized in lethally irradiated mice that were reconstituted by Thy-1-disparate BM cells with or without a thymus. The BM-derived DETC, unlike their normal TCR-gamma delta counterparts, were found to express the TCR-alpha beta/CD3 complex and CD8, and their migration to the epidermis dermis occurred independently of the thymus. The numbers of the BM-derived DETC increased with time and reached a plateau 6 mo after BM transfer, at which time the TCR-alpha beta/CD3 complex was expressed on a small fraction of the DETC in athymic BM chimeras. Although no further increase in the number was observed at later times, at 1 yr after transfer most of the BM-derived DETC came to express the TCR-alpha beta/CD3 complex in the absence of thymic influence. By contrast, most of BM-derived T cells in other lymphoid organs from athymic BM chimeras still failed to express the TCR-alpha beta/CD3 complex even at 1 yr after transfer. These results suggest that extrathymic differentiation of BM-derived DETC could occur with the epidermal microenvironment.  相似文献   

14.
Two aspects of T cell differentiation in T cell receptor (TCR)-transgenic mice, the generation of an unusual population of CD4-CD8-TCR+ thymocytes and the absence of gamma delta cells, have been the focus of extensive investigation. To examine the basis for these phenomena, we investigated the effects of separate expression of a transgenic TCR alpha chain and a transgenic TCR beta chain on thymocyte differentiation. Our data indicate that expression of a transgenic TCR alpha chain causes thymocytes to differentiate into a CD4-CD8-TCR+ lineage at an early developmental stage, depleting the number of thymocytes that differentiate into the alpha beta lineage. Surprisingly, expression of the TCR alpha chain transgene is also associated with the development of T cell lymphosarcoma. In contrast, expression of the transgenic TCR beta chain causes immature T cells to accelerate differentiation into the alpha beta lineage and thus inhibits the generation of gamma delta cells. Our observations provide a model for understanding T cell differentiation in TCR-transgenic mice.  相似文献   

15.
Humanized anti-Tac (HAT) and Mik beta1 (HuMik beta 1) Abs directed at IL-2R alpha and IL-2R beta, respectively, inhibit IL-2 binding and biological activity and together act synergistically in vitro. The Abs have been used successfully in primate models of allograft rejection, graft-vs-host disease, and autoimmunity. We produced bifunctional humanized anti-IL-2R alpha beta Abs (BF-IgG) to combine the specificity of the two Abs into one entity by fusing HAT-producing NSO cells and HuMik beta 1-producing Sp2/0 cells. BF-IgG was purified using protein G-Sepharose affinity chromatography, followed by IL-2R alpha and IL-2R beta affinity chromatography and hydrophobic interaction chromatography. BF-IgG exhibited both anti-IL-2R alpha and anti-IL-2R beta specificities in binding assays. While the Ab binds the IL-2R with intermediate affinity (Kd = 2.82 nM), it does not inhibit IL-15 binding to its high affinity IL-15R. In Kit225/K6 (IL-2R alpha beta gamma+) cells, BF-IgG was 10-fold more potent than a HAT/HuMik beta 1 equimolar mixture in blocking IL-2-induced proliferation and, unexpectedly, was at least 65-fold more active than the mixture in blocking IL-15-induced proliferation. This dual inhibitory activity may be due to cross-linking of the IL-2R alpha and IL-2R beta, thus blocking IL-2 binding and possibly impeding the association of IL-2R beta with IL-15R. BF-IgG has potent immunosuppressant activities against both IL-2- and IL-15-mediated responses, and this antagonist could be more efficacious than HAT and/or HuMik beta 1 for the treatment of autoimmunity and the prevention of allograft rejection.  相似文献   

16.
The T cell receptor (TCR) is internalized following activation of protein kinase C (PKC) via a leucine (Leu)-based motif in CD3gamma. Some studies have indicated that the TCR is recycled back to the cell surface following PKC-mediated internalization. The functional state of recycled TCR and the mechanisms involved in the sorting events following PKC-induced internalization are not known. In this study, we demonstrated that following PKC-induced internalization, the TCR is recycled back to the cell surface in a functional state. TCR recycling was dependent on dephosphorylation of CD3gamma, probably mediated by the serine/threonine protein phosphatase-2A, but independent on microtubules or actin polymerization. Furthermore, in contrast to ligand-mediated TCR sorting, recycling of the TCR was independent of the tyrosine phosphatase CD45 and the Src tyrosine kinases p56(Lck) and p59(Fyn). Studies of mutated TCR and chimeric CD4-CD3gamma molecules demonstrated that CD3gamma did not contain a recycling signal in itself. In contrast, the only sorting information in CD3gamma was the Leu-based motif that mediated lysosomal sorting of chimeric CD4-CD3gamma molecules. Finally, we found a correlation between the phosphorylation state of CD3gamma and T cell responsiveness. Based on these observations a physiological role of CD3gamma and TCR cycling is proposed.  相似文献   

17.
We have characterized an SH3-SH2-SH3 linker protein that is prominently expressed in lymphoid tissues. This protein has 58% sequence identity to Grb2. An identical protein called Grap has been found in hematopoietic cells. In Jurkat cells, T cell receptor activation leads to the association of Grap with phosphoproteins p36/38 and, to a lesser degree, Shc. This interaction is mediated by the Grap SH2 domain, which has similar binding specificity to the Grb2 SH2 domain. Grap also associates via its SH3 domains with Sos, the Ras guanine nucleotide exchange factor; with dynamin, a GTPase involved in membrane protein trafficking; and with Sam68, a nuclear RNA-binding protein that serves as a substrate of Src kinases during mitosis. T cell activation effects an increase in Grap association with p36/38, Shc, Sos, and dynamin. Sam68 binding is constitutive. Phospholipase C-gamma1 and Fyn are also found in activated Grap signaling complexes, although these interactions may not be direct. We conclude that Grap is a prominent component of lymphocyte receptor signaling. Based on the known functions of bound effector molecules, Grap-mediated responses to antigen challenge may include endocytosis of the T cell receptor, cellular proliferation, and regulated entry into the cell cycle.  相似文献   

18.
19.
During T cell development the T cell receptor (TCR) beta chain is expressed before the TCR alpha chain. Experiments in TCR beta transgenic severe combined immune deficiency (SCID) mice have shown that the TCR beta protein can be expressed on the cell surface of immature thymocytes in the absence of the TCR alpha chain and that the TCR beta protein controls T cell development with regard to cell number, CD4/CD8 expression and allelic exclusion of the TCR beta chain. Subsequent experiments have shown that on the surface of thymocytes from TCR beta transgenic SCID mice the TCR beta protein can be expressed in a monomeric and dimeric form whereas only the dimeric form was found on the surface of a TCR beta-transfected, immature T cell line. The results presented here show that normal thymocytes from 16-day-old fetuses likewise express only the dimeric form and that the monomeric form on the surface of thymocytes from transgenic mice results from glycosyl phosphatidylinositol linkage. Our results show for the first time that under physiological conditions a TCR beta dimer can be expressed on the cell surface without the TCR alpha chain.  相似文献   

20.
Beta1 integrins can provide T cell co-stimulation, but little is known concerning their downstream signaling pathways. We found that Pyk2, a focal adhesion kinase-related tyrosine kinase, is regulated by beta1 integrin signaling in human T cells. Stimulation of Jurkat T cells with the alpha4beta1 integrin ligand VCAM-1 results in Pyk2 tyrosine phosphorylation, and combined stimulation with VCAM-1 and anti-CD3 mAb induces rapid and sustained synergistic Pyk2 phosphorylation. Studies with mAb suggest that in synergistic CD3- and alpha4beta1 integrin-mediated Pyk2 tyrosine phosphorylation, a major contribution of CD3-derived signals is independent of their effects on regulating integrin adhesion. Analysis of resting human CD4+ T cells confirmed the ability of CD3-derived signals to synergize with beta1 integrin-dependent signals in the induction of Pyk2 tyrosine phosphorylation. In addition, although CD28-mediated co-stimulatory signals were able to synergize with CD3-mediated signals in inducing ERK and JNK activation and secretion of IL-2 in the primary T cells, they did not contribute to the induction of Pyk2 phosphorylation. Taken together, these results indicate a potential role for Pyk2 in T cell co-stimulation mediated specifically by beta1 integrins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号