首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variable-rate variable-power MQAM for fading channels   总被引:9,自引:0,他引:9  
We propose a variable-rate and variable-power MQAM modulation scheme for high-speed data transmission over fading channels. We first review results for the Shannon capacity of fading channels with channel side information, where capacity is achieved using adaptive transmission techniques. We then derive the spectral efficiency of our proposed modulation. We show that there is a constant power gap between the spectral efficiency of our proposed technique and the channel capacity, and this gap is a simple function of the required bit-error rate (BER). In addition, using just five or six different signal constellations, we achieve within 1-2 dB of the maximum efficiency using unrestricted constellation sets. We compute the rate at which the transmitter needs to update its power and rate as a function of the channel Doppler frequency for these constellation sets. We also obtain the exact efficiency loss for smaller constellation sets, which may be required if the transmitter adaptation rate is constrained by hardware limitations. Our modulation scheme exhibits a 5-10-dB power gain relative to variable-power fixed-rate transmission, and up to 20 dB of gain relative to nonadaptive transmission. We also determine the effect of channel estimation error and delay on the BER performance of our adaptive scheme. We conclude with a discussion of coding techniques and the relationship between our proposed modulation and Shannon capacity  相似文献   

2.
Goldsmith (see IEEE Trans. Commun., vol.45, p.1218-30, 1997) proposed an adaptive rate MQAM with variable power for a higher transmission rate in a fading channel. However, its successful operation requires a highly linear power amplifier to support its variable transmission power. In this paper, to alleviate this requirement, we present an adaptive rate MQAM with on/off power control. The numerical results show that the proposed scheme has a smaller dynamic range of transmission power than the Goldsmith's one and suffers from SNR degradation of about 1.3 dB in terms of spectral efficiency when a set of integer rates is employed  相似文献   

3.
The spectral efficiency results for different adaptive transmission schemes over correlated diversity branches with unequal average signal to noise ratio (SNR) obtained so far in literature are not applicable for Nakagami-0.5 fading channels. In this paper, we investigate the effect of fade correlation and level of imbalance in the branch average received SNR on the spectral efficiency of Nakagami-0.5 fading channels in conjunction with dual-branch selection combining (SC). This paper derived the expressions for the spectral efficiency over correlated Nakagami-0.5 fading channels with unequal average received SNR. This spectral efficiency is evaluated under different adaptive transmission schemes using dual-branch SC diversity scheme. The corresponding expressions for Nakagami-0.5 fading are considered to be the expressions under worst fading conditions. Finally, numerical results are provided to illustrate the spectral efficiency degradation due to channel correlation and unequal average received SNR between the different combined branches under different adaptive transmission schemes. It has been observed that optimal simultaneous power and rate adaptation (OPRA) scheme provides improved spectral efficiency as compared to truncated channel inversion with fixed rate (TIFR) and optimal rate adaptation with constant transmit power (ORA) schemes under worst case fading scenario. It is very interesting to observe that TIFR scheme is always a better choice over ORA scheme under correlated Nakagami-0.5 fading channels with unequal average received SNR.  相似文献   

4.
The impact of inaccurate channel state information at the transmitter for a variable rate variable power multilevel quadrature amplitude modulation (VRVP-MQAM) system over a Rayleigh flat-fading channel is investigated. A system model is proposed with rate and power adaptation based on the estimates of instantaneous signal-to-noise ratio (SNR) and bit error rate (BER). A pilot symbol assisted modulation scheme is used for SNR estimation. The BER estimator is derived using a maximum a posteriori approach and a simplified closed-form solution is obtained as a function of only the second order statistical characterization of the channel state imperfection. Based on the proposed system model, rate and power adaptation is derived for the optimization of spectral efficiency subject to an average power constraint and an instantaneous BER requirement. The performance of the VRVP-MQAM system under imperfect channel state information (CSI) is evaluated. We show that the proposed VRVP-MQAM system that employs optimal solutions based on the statistical characterization of CSI imperfection achieves a higher spectral efficiency as compared to an ideal CSI assumption based method.  相似文献   

5.
Adaptive MQAM modulation is used to maximize spectral efficiency of Multiple-Input Multiple-Output (MIMO) systems while keeping bit error rate (BER) under a target level. Closed-form expressions of the average spectral efficiency, coined as discrete-rate spectral efficiency (DRSE), are derived for adaptive modulation MIMO systems using different algorithms. To further enhance the spectral efficiency, a low complexity adaptation scheme is suggested to switch across different algorithms based on the DRSE. In the current letter, we investigate the adaptation scheme that switches between Orthogonal Space-Time Block Codes (OSTBC) and spatial multiplexing with zero-forcing (ZF) detection for MIMO systems with two transmit antennas. Two types of operating environment are considered: flat Rayleigh fading channel without spatial correlation and spatially correlated Rayleigh fading channel with transmit correlation.  相似文献   

6.
We propose a new adaptive modulation technique for simultaneous voice and data transmission over fading channels and study its performance. The proposed scheme takes advantage of the time-varying nature of fading to dynamically allocate the transmitted power between the inphase (I) and quadrature (Q) channels. It uses fixed-rate binary phase shift keying (BPSK) modulation on the Q channel for voice, and variable-rate M-ary amplitude modulation (M-AM) on the I channel for data. For favorable channel conditions, most of the power is allocated to high rate data transmission on the I channel. The remaining power is used to support the variable-power voice transmission on the Q channel. As the channel degrades, the modulation gradually reduces its data throughput and reallocates most of its available power to ensure a continuous and satisfactory voice transmission. The scheme is intended to provide a high average spectral efficiency for data communications while meeting the stringent delay requirements imposed by voice. We present closed-form expressions as well as numerical and simulation results for the outage probability, average allocated power, achievable spectral efficiency, and average bit error rate (BER) for both voice and data transmission over Nakagami-m fading channels. We also discuss the features and advantages of the proposed scheme. For example, in Rayleigh fading with an average signal-to-noise ratio (SNR) of 20 dB, our scheme is able to transmit about 2 bits/s/Hz of data at an average BER of 10 -5 while sending about 1 bit/s/Hz of voice at an average BER of 10-2  相似文献   

7.
Degrees of freedom in adaptive modulation: a unified view   总被引:2,自引:0,他引:2  
We examine adaptive modulation schemes for flat-fading channels where the data rate, transmit power, and instantaneous BER are varied to maximize spectral efficiency, subject to an average power and BER constraint. Both continuous-rate and discrete-rate adaptation are considered, as well as average and instantaneous BER constraints. We find the general form of power, BER and data rate adaptation that maximizes spectral efficiency for a large class of modulation techniques and fading distributions. The optimal adaptation of these parameters is to increase the power and data rate and decrease the BER as the channel quality improves. Surprisingly, little spectral efficiency is lost when the power or rate is constrained to be constant. Hence, the spectral efficiency of adaptive modulation is relatively insensitive to which degrees of freedom are adapted  相似文献   

8.
李威  李聪 《山西电子技术》2004,10(6):11-12,27
探讨了时变信道里MIMO系统的自适应编码调制问题并且提出一个低复杂率量化方案,被称为增强型码率量化方案,也叫ERQ。不需要大量计算,ERQ可以通过最佳连续码率和功率适应提高频谱效率。除此之外,ERQ还满足误码率和平均传送能量限制条件。  相似文献   

9.
为了在无线数据传输中获得更高的频谱利用率,提出了一种用于正交频分复用(OFDM)的基于容量估计的子带自适应Turbo编码调制方法。其目标是在恒定发送功率和目标误码率(BER)限制下优化系统吞吐。仿真表明,在发端完全信道估计下,此自适应OFDM方法比基于固定门限的自适应Turbo编码调制有2.5-5 dB的信噪比(SNR)增益。然而,时变信道中反馈信息的延时会带来自适应性能的恶化。文中接着通过研究表明,在子带自适应编码调制中,减少选取子带的个数,充分利用OFDM频域上的分集特性是一种可以降低信道时变带来性能恶化的有效途径。  相似文献   

10.
In this paper, we propose an adaptive amplify‐and‐forward (AF) relaying scheme that selects the best relay among the available relay nodes opportunistically to cooperate with a source node for improvement of the spectral efficiency. This improvement can be achieved by introducing a policy that gives the useful cooperative regions and defines a switching threshold signal‐to‐noise ratio that guarantees the bit error rate (BER) of cooperative transmission is below the target. We model all links as independent non‐identically distributed Rayleigh fading channels. We then derive closed‐form expressions for the average spectral efficiency, average BER, and outage probability when an upper bound for the signal‐to‐noise ratio of the end‐to‐end relay path is applied and adaptive discrete rate is considered. Numerical and simulation results show that the proposed scheme, compared with the outage‐based AF incremental relaying, AF fixed relaying, and the conventional direct transmission, can achieve the maximum average spectral efficiency while maintaining the average BER and outage probability. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
This paper proposes an adaptive transmission modulation (ATM) technique for free‐space optical (FSO) links over gamma‐gamma turbulence channels.The ATM technique provides efficient utilization of the FSO channel capacity for improving spectral efficiency, by adapting the order of the phase‐shift keying modulation scheme, according to the channel conditions and the required bit error rate (BER). To overcome the channel degradation resulting from the turbulence effects as well as the pointing errors (PEs), single‐input multiple‐output (SIMO) system with maximal ratio combining (MRC) is proposed. Exact closed‐form expressions of BER and upper bound of the capacity are derived and verified by Monte Carlo simulations. The numerical results show that the proposed adaptive technique improves the spectral efficiency (SE) five times higher than the nonadaptive technique at the same BER threshold (10?3).This improvement is achieved at signal‐to‐noise ratio (SNR) equals 27 and 42  dB in the case of atmospheric turbulence without and with PE, respectively. Furthermore, this SE could be obtained while the SNR = 30  dB by using ( 1 × 4 ) SIMO scheme with MRC and PE and having the same transmitting optical power.  相似文献   

12.
本文提出了一种通用的自适应编码调制系统吞吐量性能分析方法.基于各固定编码调制方式的误码率(BER)性能,使每种编码调制方案对应于一个信道平均信噪比(SNR)范围,再应用拉格朗日函数法得到使自适应编码调制系统吞吐量性能最大的信噪比转换门限,可得到系统的平均吞吐量性能.数值分析结果表明,相对于自适应M进制正交幅度调制(MQAM),自适应Turbo编码MQAM系统吞吐量性能有显著提高,并且该性能受瞬时误码率要求的影响较小.Nakagami信道中,在相同平均信道信噪比条件下,随着m的增大,系统吞吐量性能提高缓慢.  相似文献   

13.
Practically, the maximum transmission power of transmission systems is limited. This power constraint causes the variable power control derived from no maximum power limitation suffering from performance degradation. In this paper, a constrained variable‐power adaptive M‐ary quadrature amplitude modulation scheme for MIMO systems with space–time coding is developed. Convex optimization is used to derive the switching thresholds of the instantaneous signal‐to‐noise ratio for power control (PC) and adaptive modulation under the constraints of maximum power, average power, and target BER. In the derivation of the relation between modulation and power, the exact BER expression of binary phase shift keying modulation and a tight bound for higher order quadrature amplitude modulation are used to make the PC scheme fulfill the target BER even at low signal‐to‐noise ratio where the previous PC schemes fail to meet the target BER. Numerical results show that the derived control scheme under the power constraints can obtain the spectrum efficiency and BER performance close to the previous control scheme without power limitation. Moreover, it can satisfy the requirements of power limitation and target BER and can effectively avoid the excessive power consumption of previous PC scheme in poor channel condition. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents a new transmission scheme for a decode and forward (DF) relay network using continuous power adaptation while independent average power constraints are provisioned for each node. To have analytical insight, the achievable throughputs are analysed using continuous adaptation of the rates and the powers. As shown by numerical evaluations, a considerable outperformance is seen by continuous power adaptation compared to the case where constant powers are utilised. Also for practical systems, a new throughput maximised transmission scheme is developed using discrete rate adaptation (adaptive modulation and coding) and continuous transmission power adaptation. First a 2-hop relay network is considered and then the scheme is extended for an N-hop network. Numerical evaluations show the efficiency of the designed schemes.  相似文献   

15.
We consider power adaptation strategies for binary phase-shift keying signals in Rayleigh fading channels under the assumption that channel state information is provided at both the transmitter and the receiver. We first derive a closed-form expression for the optimal power adaptation that minimizes average bit-error rate (BER) subject to average and peak transmission power constraints. Then, we analyze the average BER for channel inversion power adaptation with the same constraints. Our results show that the performance difference between the optimal power adaptation and the channel inversion becomes negligibly small as available average transmission power increases and/or peak-to-average power ratio decreases. We also find that an optimal peak-to-average power ratio exists that minimizes the average BER in the channel inversion scheme.  相似文献   

16.
When adaptive modulation is used to counter short-term fading in mobile radio channels, signaling delays create problems with outdated channel state information. The use of channel power prediction will improve the performance of the link adaptation. It is then of interest to take the quality of these predictions into account explicitly when designing an adaptive modulation scheme. We study the optimum design of an adaptive modulation scheme based on uncoded M-quadrature amplitude modulation, assisted by channel prediction for the flat Rayleigh fading channel. The data rate, and in some variants the transmit power, are adapted to maximize the spectral efficiency, subject to average power and bit-error rate constraints. The key issues studied here are how a known prediction error variance will affect the optimized transmission properties, such as the signal-to-noise ratio (SNR) boundaries that determine when to apply different modulation rates, and to what extent it affects the spectral efficiency. This investigation is performed by analytical optimization of the link adaptation, using the statistical properties of a particular, but efficient, channel power predictor. Optimum solutions for the rate and transmit power are derived, based on the predicted SNR and the prediction error variance.  相似文献   

17.
该文研究了在平坦Rayleigh衰落信道下,借助于无线信道预测对一个基于非编码的MQAM自适应调制进行优化设计的问题。主要是通过采用无偏二阶估计的方法去研究一个已知的预测误差方差对最优化传输特性的影响。推导出基于预测的信噪比和预测误差方差的数据速率的最优解,以此对数据速率进行调整,使得频谱效率在误比特率的约束条件下达到最大化。通过仿真给出的数值解表明它能更好地将链路自适应地快速调整到信道的真实条件,提高整个系统的性能。  相似文献   

18.
Adaptive Modulation over Nakagami Fading Channels   总被引:29,自引:4,他引:25  
We first study the capacity of Nakagami multipath fading (NMF) channels with an average power constraint for three power and rate adaptation policies. We obtain closed-form solutions for NMF channel capacity for each power and rate adaptation strategy. Results show that rate adaptation is the key to increasing link spectral efficiency. We then analyze the performance of practical constant-power variable-rate M-QAM schemes over NMF channels. We obtain closed-form expressions for the outage probability, spectral efficiency and average bit-error-rate (BER) assuming perfect channel estimation and negligible time delay between channel estimation and signal set adaptation. We also analyze the impact of time delay on the BER of adaptive M-QAM.  相似文献   

19.
In this paper, a modified-rate-quantization algorithm for multiple input multiple output (MIMO) systems is proposed using singular-value decomposition (SVD). This low complexity scheme adapts the subchannel transmit power and spectral efficiency in the spatial and temporal domains under transmit power and instantaneous bit error rate (BER) constraints. It is shown that with five discrete-rate levels, the proposed scheme reaches a spectral efficiency performance similar to the scheme with a continuous rate. The robustness of the proposed scheme to channel state information (CSI) imperfections is also studied. The obtained results show that the spectral efficiency is unaffected up to a certain level, but the bit error rate (BER) performance is particularly sensitive to these imperfections, especially at high SNR levels. Indeed, this ideally designed MIMO system over-estimates the subchannels, which leads to a deterioration of the BER performance. A new version of this algorithm, which is suitable for vertical Bell Labs layered space–time (V-BLAST) systems, is also presented. Through simulation results, it appears that the extended algorithm allows to reach a better performance in terms of spectral efficiency than other known schemes, but it is more sensitive to imperfect CSI than the first version.  相似文献   

20.
We introduce in this paper a new adaptive power‐controlled diversity combining scheme that reduces the average transmitted power of the mobile units (MUs) while meeting a certain minimum required quality of service. The key idea is (i) to collect and combine all the available diversity paths at the base station (BS) and then (ii) to request the MU to increase or decrease its transmitted power just to track the required target signal‐to‐noise ratio (SNR). Four power control variants accounting for practical implementation constraints including discrete power levels and transmitter gain saturation are proposed and studied. Some selected numerical results show that the proposed scheme offers considerable savings in the transmitted power levels over a wide SNR range but amplifier saturation leads to a violation of the target BER requirement in the low average SNR range. Additional numerical examples show that the power control variants that take into account practical implementation constraints conserve the main features of the ideal continuous power algorithm. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号