首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Suiyang Khoo  Zhihong Man 《Automatica》2008,44(11):2995-2998
This note points out that the time complexity of the main multiple-surface sliding control (MSSC) algorithm in Huang and Chen [Huang, A. C. & Chen, Y. C. (2004). Adaptive multiple-surface sliding control for non-autonomous systems with mismatched uncertainties. Automatica, 40(11), 1939-1945] is O(2n). Here, we propose a simplified recursive design MSSC algorithm with time complexity O(n), and, using mathematical induction, we show that this algorithm agrees with this MSSC law.  相似文献   

2.
In this paper, robust adaptive sliding mode tracking control for discrete-time multi-input multi-output systems with unknown parameters and disturbance is considered. The robust tracking controller is comprised of adaptive control and sliding mode control design. Bounded motion of the system around the sliding surface and stability of the global system in the sense that all signals remain bounded are guaranteed. If the disturbance and the reference signal are slowly varying with respect to the sampling frequency, the proposed sliding mode controller can reject the disturbance and output tracking can be approximately achieved. Simulation results are presented to illustrate the proposed approach.  相似文献   

3.
We address the problem of control and synchronization of a class of uncertain chaotic systems. Our approach follows techniques of sliding mode control and adaptive estimation law. The adaptive algorithm is constructed based on the sliding mode control to ensure perfect tracking and synchronization in presence of system uncertainty and external disturbance. Stability of the closed-loop system is proved using Lyapunov stability theory. Our theoretical findings are supported by simulation results.  相似文献   

4.
5.
A new design approach for an adaptive fuzzy sliding mode controller (AFSMC) for linear systems with mismatched time-varying uncertainties is presented. The coefficient matrix of the sliding function can be designed to satisfy a sliding coefficient matching condition provided time-varying uncertainties are bounded. With the sliding coefficient matching condition satisfied, an AFSMC is proposed to stabilize the uncertain system. The parameters of output fuzzy sets in the fuzzy mechanism are on-line adapted to improve the performance of the fuzzy sliding mode control system. The bounds of uncertainties are not required to be known in advance for the AFSMC. Stability of the fuzzy control system is guaranteed and the system is shown to be invariant on the sliding surface. Moreover, chattering around the sliding surface in sliding mode control can be reduced by the proposed design approach. Simulation results are included to illustrate the effectiveness of the proposed AFSMC.  相似文献   

6.
A continuous sliding mode control with moving sliding surface for nonlinear systems of arbitrary order is presented in this paper. The sliding surface is moved repetitively toward the target sliding surface in order to ensure that the system trajectory is close to the actual surface during the whole control process. The parameters of sliding mode control are tuned by a fuzzy logic. The proposed procedure reduces the time when the system operates in the approaching phase during which the control performance is deteriorated since the system is more susceptible to external disturbances and model uncertainties. The effectiveness of the presented approach is demonstrated on a control of a flexible robot manipulator arm.  相似文献   

7.
A new design approach of an adaptive fuzzy terminal sliding mode controller for linear systems with mismatched time-varying uncertainties is presented in this paper. A fuzzy terminal sliding mode controller is designed to retain the advantages of the terminal sliding mode controller and to reduce the chattering occurred with the terminal sliding mode controller. The sufficient condition is provided for the uncertain system to be invariant on the sliding surface. The parameters of the output fuzzy sets in the fuzzy mechanism are adapted on-line to improve the performance of the fuzzy sliding mode control system. The bounds of the uncertainties are not required to be known in advance for the presented adaptive fuzzy sliding mode controller. The stability of the fuzzy control system is also guaranteed. Moreover, the chattering around the sliding surface in the sliding mode control can be reduced by the proposed design approach. Simulation results are included to illustrate the effectiveness of the proposed adaptive fuzzy terminal sliding mode controller.  相似文献   

8.
In this paper, discretization behaviors of equivalent control based sliding mode control systems with matched uncertainties are studied. Upper bounds for system steady states are established. Some inherent dynamical periodic properties of the systems subject to matched constant and periodic uncertainties are explored. Simulations are presented to verify the theoretical results.  相似文献   

9.
一类非线性系统的模糊自适应滑模输出反馈控制   总被引:1,自引:0,他引:1       下载免费PDF全文
针对一类非线性系统,提出一种新的模糊自适应滑模输出反馈控制方法,该方法不需要非线性系统的状态可测的假设。基于李亚普诺夫函数方法,给出了模糊自适应输出反馈控制律以及在线调节的参数自适应律,证明了模物闭环系统的稳定性和跟踪误差的收敛性。  相似文献   

10.
This paper presents adaptive cruise control of a hybrid electric vehicle. First, the mathematical model of the vehicle is formulated. Next, a classical controller is applied to the vehicle model. Swarm optimisation is implemented for self parameter tuning of the controller. The model is simulated and the result of the response to a variable speed is analysed. The results reveal that the controller is not a powerful means to manage the rapid transformation of the desire set point. Accordingly, a sliding mode controller is developed next. The performance of this controller is compared with the classical controller.  相似文献   

11.
An adaptive backstepping tuning functions sliding mode controller is proposed for a class of strict-feedback nonlinear uncertain systems. In this control design, adaptive backstepping is used to deal with unknown or uncertain parameters and the matching condition restricting the Lyapunov based design. The main drawback of the Lyapunov based adaptive backstepping which is the overparametrisation is eliminated by the tuning functions. The adaptive backstepping tuning functions design is combined with the sliding mode control in order to overcome quickly varying parametric and unstructured uncertainties, and to obtain chattering free control. The proposed controller not only provides robustness property against uncertainty but also copes with the overparametrisation problem. Experimental results of the proposed controller are compared with those of the standard sliding mode controller. The proposed controller exhibits satisfactory transient performance, good estimates of the uncertain parameters, and less chattering.  相似文献   

12.
This paper presents a new robust sliding mode control (SMC) method with well-developed theoretical proof for general uncertain time-varying delay stochastic systems with structural uncertainties and the Brownian noise (Wiener process). The key features of the proposed method are to apply singular value decomposition (SVD) to all structural uncertainties and to introduce adjustable parameters for control design along with the SMC method. It leads to a less-conservative condition for robust stability and a new robust controller for the general uncertain stochastic systems via linear matrix inequality (LMI) forms. The system states are able to reach the SMC switching surface as guaranteed in probability 1. Furthermore, it is theoretically proved that the proposed method with the SVD and adjustable parameters is less conservatism than the method without the SVD. The paper is mainly to provide all strict theoretical proofs for the method and results.  相似文献   

13.
An adaptive recurrent cerebellar-model-articulation-controller (RCMAC) sliding-mode control (SMC) system is developed for the uncertain nonlinear systems. This adaptive RCMAC sliding-model control (ARCSMC) system is composed of two systems. One is an adaptive RCMAC system utilized as the main controller, in which an RCMAC is designed to identify the system models. Another is a robust controller utilized to achieve system’s robust characteristics, in which an uncertainty bound estimator is developed to estimate the uncertainty bound so that the chattering phenomenon of control effort can be eliminated. The on-line adaptive laws of the ARCSMC system are derived in the sense of Lyapunov so that the system stability can be guaranteed. Finally, a comparison between SMC and ARCSMC for a chaotic system and a car-following system are presented to illustrate the effectiveness of the proposed ARCSMC system. Simulation results demonstrate that the proposed control scheme can achieve favorable control performances for the chaotic system and car-following systems without the knowledge of system dynamic functions.  相似文献   

14.
We pose and solve an extremum seeking control problem for a class of nonlinear systems with unknown parameters. Extremum seeking controllers are developed to drive system states to the desired set-points that extremize the value of an objective function. The proposed adaptive extremum seeking controller is “inverse optimal” in the sense that it minimizes a meaningful cost function that incorporates penalty on both the performance error and control action. Simulation studies are provided to verify the effectiveness of the proposed approach.  相似文献   

15.
控制增益符号未知的MIMO时滞系统自适应控制   总被引:2,自引:0,他引:2  
针对一类带有死区模型并具有未知函数控制增益的不确定MIMO非线性时滞系统,基于滑模控制原理和Nussbaum函数的性质,提出了一种稳定的自适应神经网络控制方案.该方案放宽了对函数控制增益上界为未知常数的假设,并通过使用Lyapunov-Krasovskii泛函抵消了因未知时变时滞带来的系统不确定性.理论分析证明,闭环系统是半全局一致终结有界.仿真结果表明了该方法的有效性.  相似文献   

16.
ABSTRACT

This editorial article gives a short introduction to Special Issue of International Journal of Control on Adaptive Sliding Mode Control and Observation.  相似文献   

17.
本文研究了一类计及电动汽车的电力系统中的负荷频率控制问题, 首先, 将电动汽车模型与传统的负载频率控制模型相结合,在未知扰动波动范围的条件下设计了自适应滑模控制律. 其次, 分别考虑了电网调频中的匹配扰动和不匹配扰动问题, 并利用李亚普诺夫稳定性理论导出了匹配和不匹配条件下的系统稳定的充分条件. 最后, 两个区域电力系统的仿真结果表明, 电动汽车作为电源和负载都可以提高电网的频率稳定性, 所设计的控制器可以有效地调节电网的频率波动.  相似文献   

18.
In this paper, an adaptive neural tracking control approach is proposed for a class of nonlinear systems with dynamic uncertainties. The radial basis function neural networks (RBFNNs) are used to estimate the unknown nonlinear uncertainties, and then a novel adaptive neural scheme is developed, via backstepping technique. In the controller design, instead of using RBFNN to approximate each unknown function, we lump all unknown functions into a suitable unknown function that is approximated by only a RBFNN in each step of the backstepping. It is shown that the designed controller can guarantee that all signals in the closed-loop system are semi-globally bounded and the tracking error finally converges to a small domain around the origin. Two examples are given to demonstrate the effectiveness of the proposed control scheme.  相似文献   

19.
An adaptive learning tracking control scheme is developed for robotic manipulators by a synthesis of adaptive control and learning control approaches. The proposed controller possesses both adaptive and learning properties and thereby is able to handle robotic systems with both time-varying periodic uncertainties and time invariant parameters. Theoretical proofs are established to show that proposed controllers ensure asymptotical tracking performance. The effectiveness of the proposed approaches is validated through extensive numerical simulation results.  相似文献   

20.
This article presents a robust fuzzy sliding mode controller. The methodology of sliding mode control provides an easy way to control under-actuated nonlinear systems with uncertainties. The structure of the sliding surface is designed as follows. First, decouple the entire system into second-order systems so that each subsystem has a separate control target expressed in terms of a sliding surface. Second, from the sliding surface of subsystems, organize the main sliding surface system. Third, generate a control input for the main sliding surface to make whole subsystems move toward their sliding surface. A fuzzy controller is used to obtain a smooth boundary layer to the sliding surface. Finally, the fuzzy sliding mode controller presented is used to control an under-actuated nonlinear system, and confirms the validity of the proposed approach and its robustness to uncertainties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号