首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The louvered fin heat exchanger, a type of compact heat exchanger, has been used heavily in the automotive and air conditioning industries for the last several decades. The majority of past research, aimed towards improving louvered fin exchanger efficiency, has focused on optimizing various parameters of the louvered fin. The experimental study presented in this paper concentrates instead on augmenting the heat transfer along the tube wall of the compact heat exchanger through the use of winglets placed on the louvers. The experiments were completed on a 20 times scaled model of an idealized louvered fin exchanger with a fin pitch to louver pitch ratio of 0.76 and a louver angle of 27°. The Reynolds numbers tested, based on louver pitch, were between 230 and 1016. A number of geometrical winglet parameters, including angle of attack, aspect ratio, direction, and shape, were all evaluated based on heat transfer augmentation, friction factor augmentation, and efficiency index (combination of both augmentations). In an attempt to optimize these winglet parameters, tube wall heat transfer augmentations as high as 39% were achieved with associated friction factor augmentations as high as 23%.  相似文献   

2.
《Applied Thermal Engineering》2007,27(2-3):539-544
The Taguchi method is a well-known parametric study tool in engineering quality and experimental design. This study analyzes five experimental factors (flow depth, ratio of fin pitch and fin thickness, tube pitch, number of louvers and angle of louver) affecting the heat transfer and pressure drop of a heat exchanger with corrugated louvered fins using the Taguchi method. Fifteen samples are selected from experimental database and the heat transfer and flow friction characteristics are analyzed. The results show that flow depth, ratio of fin pitch and fin thickness and the number of the louvers are the main factors that influence significantly the thermal hydraulic performance of the heat exchanger with corrugated louvered fins. Therefore, these three factors are considered as the main factors for an optimum design of a heat exchanger.  相似文献   

3.
Numerical investigation of fluid flow and heat transfer characteristics over louvered fins and flat tube in compact heat exchangers is presented in this study. Three-dimensional simulations of single and double row tubes with louvered fins have been conducted. Simulations are performed for different geometries with varying louver pitch, louver angle, fin pitch and tube pitch and for different Reynolds number. Conjugate heat transfer and conduction through the fins are considered. The air-side performance of heat exchanger is evaluated by calculating Stanton number and friction factor. The results are compared with experiment and a good agreement is observed. The local Nusselt number variation along the top surface of the louver is calculated and effects of geometrical parameters on the average heat transfer coefficient is computed. Design curves are obtained which can used to predict the heat transfer and the pressure drop for a given louver geometry.  相似文献   

4.
The airside heat, mass and momentum transfer characteristics of seven wavy fin-and-tube heat exchangers with hydrophilic coating under dehumidifying conditions were experimented. The test inlet air dry bulb temperatures were 20, 27 and 35 oC, the inlet relative humidity were 50%, 60%, 70% and 80%, and the air velocity were 0.5, 1.0, 2.0, 3.0 and 4.0 m s?1. The test results indicate that both the Colburn jm factor and the Colburn jh factor decrease with the increase of fin pitch, and this phenomenon becomes more and more pronounced as Reynolds number decreases. The friction factor is very sensitive to the change of fin pitch, and the friction factor shows a cross-over phenomenon as fin pitch changes. The Colburn jh factor decreases and the Colburn jm factor increases when the number of tube rows increases, while the friction performance is insensitive to the change of the number of tube rows. The effects of inlet relative humidity on the heat transfer and friction performance can be omitted, but the Colburn jm factor decreases with the increase of the inlet relative humidity. The predictive ability of the available state-of-the-art heat transfer and pressure drop correlations was evaluated with the experiment data of the present study. The new heat, mass and momentum transfer correlations were proposed to describe the present test results according to the multiple linear regression technique. The mean deviations of the proposed jh, jm and f correlations are 6.3%, 8.9% and 7.9%, respectively. Comparing to published data reduction method, the process line on psychrometric chart of fin-and-tube heat exchanger for partially wet conditions and more accurate overall heat transfer coefficient equation are put forward in this paper.  相似文献   

5.
This study proposes a new method, namely the “finite circular fin method” (FCFM), to analyze the performance of fin-and-tube heat exchangers having plain fin configuration under dehumidifying conditions. The analysis is done by dividing the heat exchanger into many tiny segments (number of tube rows × number of tube passes per row × number of fins). The tiny segments are distinguished into three types: the fully dry, partially wet or fully wet surface conditions. The proposed method is capable of handling fully and partially wet surfaces. From the test results, it is found that the sensible heat transfer performance and the mass transfer performance are insensitive to changes of fin pitch. The influence of inlet relative humidity on the sensible heat transfer performance is small, and is almost negligible when the number of tube rows is above four. For one and two row configurations, considerable increase of mass transfer performance is encountered when partially wet condition takes place. The sensible heat transfer coefficient is about the same for those in fully wet and partially wet conditions provided that the number of tube row is equal or greater than four. Correlations applicable for both fully wet and partially wet conditions are proposed to describe the heat and mass performance for the present plain fin configuration.  相似文献   

6.
The focus of this paper is to optimize the air-side performance of a wavy fin and tube heat exchanger at different design parameters on an individual target response using the Taguchi method. However, a statistical concept, gray relational analysis, is also studied for combined optimization, considering all target responses at a time. Based on the heat exchanger requirement, parametric study for the air-side is regarded as a more significant heat transfer and lower frictional factor. Experimental correlations were available and used for the 27 orthogonal runs. Investigation revealed the highest 47.06% fin pitch, 37.24% fin pitch, 25.46% air velocity, and 23.9% fin thickness contribution ratio for the target response of friction factor (TPF), heat transfer coefficient, and Colburn factor, respectively, with the application of the Taguchi method in a heat exchanger. GRG gives an optimum set of design parameters, A3B3C2D1E3F2G1, for wavy fin and tube of fin pitch of 6 mm, tube row number of 6, waffle height 1.8 mm, fin thickness 0.12 mm, and air velocity 5 m/s. Also, longitudinal tube pitch is 27.5 mm, and transverse tube pitch of 24.8 mm, at which TPF is maximum while the friction factor is minimal. The Colburn factor is the most significant, minor friction factor, and the heat transfer coefficient and TPF are the most considerable in GRG. Hence, an improved heat transfer performance design of a wavy fin and tube heat exchanger is achieved using the above techniques.  相似文献   

7.
In the present work, heat transfer and friction characteristics were experimentally investigated, employing louvered strips inserted in a concentric tube heat exchanger. The louvered strip was inserted into the tube to generate turbulent flow which helped to increase the heat transfer rate of the tube. The flow rate of the tube was in a range of Reynolds number between 6000 and 42,000. The turbulent flow devices were consisted of (1) the louvered strips with forward or backward arrangements, and (2) the louvered strip with various inclined angles (θ = 15°, 25° and 30°), inserted in the inner tube of the heat exchanger. In the experiment, hot water was flowed through the inner tube whereas cold water was flowed in the annulus. The experimental data obtained were compared with those from plain tubes of published data. Experimental results confirmed that the use of louvered strips leads to a higher heat transfer rate over the plain tube. The increases in average Nusselt number and friction loss for the inclined forward louvered strip were 284% and 413% while those for the backward louvered strip were 263% and 233% over the plain tube, respectively. In addition, the use of the louvered strip with backward arrangement leads to better overall enhancement ratio than that with forward arrangement around 9% to 24%.  相似文献   

8.
In this paper, the performance of flat plate finned tube heat exchangers operating under frosting conditions was investigated experimentally. Heat exchangers of single and multiple tube row(s) were tested to show the effects of various parameters on heat transfer performance. The parameters include temperature and relative humidity of air, flow rate of air, refrigerant temperature, fin pitch, and row number. The time variations of heat transfer rate, overall heat transfer coefficient, and pressure drop of heat exchangers presented.  相似文献   

9.
The effect of electric field on the performance of automobile radiator is investigated in this work. In this experiment, a louvered fin and flat tube automobile radiator was mounted in a wind tunnel and there was heat exchange between a hot water stream circulating inside the tube and a cold air stream flowing through the external surface. The electric field was supplied on the airside of the heat exchanger and its supply voltage was adjusted from 0 kV to 12 kV.From the experiment, it was found that the unit with electric field pronounced better heat transfer rate, especially at low frontal velocity of air. The correlations for predicting the air-side heat transfer coefficient of the automobile radiator, with and without electric field, at low frontal air velocity were also developed and the predicted results agreed very well with the experimental data.  相似文献   

10.
Experimental studies were conducted to investigate the air-side heat transfer and pressure drop characteristics of a novel louvered fins and flat tube heat exchangers. A series of tests were conducted for 9 heat exchangers with different fin space and fin length, at a constant tube-side water flow rate of 2.8 m3/h. The air side thermal performance data were analyzed using the effectiveness-NTU method. Results were presented as plot of Colburn j factor and friction factor f against the Reynolds number in the range of 500–6500. The characteristics of the heat transfer and pressure drop of different fin space and fin length were analyzed and compared. In addition, the curves of the heat transfer coefficients vs. pumping power per unit heat transfer area were plotted. Finally, the area optimization factor was used to evaluate the thermal hydraulic performance of the louvered fins with differential geometries. The results showed that the j and f factors increase with the decrease of the fin space and fin length, and the fin space has more obvious effect on the thermal hydraulic characteristics of the novel louvered fins.  相似文献   

11.
Three-dimensional CFD simulations are carried out to investigate heat transfer and fluid flow characteristics of a four-row plain fin-and-tube heat exchanger using the Commercial Computational Fluid Dynamics Code ANSYS CFX 12.0. Heat transfer and pressure drop characteristics of the heat exchanger are investigated for Reynolds numbers ranging from 400 to 2000. Fluid flow and heat transfer are simulated and results compared using both laminar and turbulent flow models (k-ω) with steady and incompressible fluid flow. Model validation is carried out by comparing the simulated case friction factor (f) and Colburn factor (j) with the experimental data of Wang et al. [1]. Reasonable agreement is found between the simulations and experimental data. In this study the effect of geometrical parameters such as fin pitch, longitudinal pitch and transverse pitch of tube spacing are studied. Results are presented in the form of friction factor (f) and Colburn factor (j). For both laminar and transitional flow conditions heat transfer and friction factor decrease with the increase of longitudinal and transverse pitches of tube spacing whereas they increase with fin pitches for both in-line and staggered configurations. Efficiency index increases with the increase of longitudinal and transverse pitches of tube spacing but decreases with increase of fin pitches. For a particular Reynolds number, the efficiency index is higher in in-line arrangement than the staggered case.  相似文献   

12.
In this paper, a novel bayonet tube high temperature heat exchanger (HTHE) with inner and outer fins is presented. It can be used in the ultra high temperature environment, such as hydrogen production, very high temperature reactor and externally fired combined cycle. Numerical investigation of heat transfer performance on the inside of bayonet element has been conducted for structure design. The numerical results suggest that the inner fin and inner tube should not be welded together. It is recommended that the air enters from the inner tube and exits from the annular space in the high temperature zone. A high temperature experimental system has been established to test the heat transfer and pressure drop characteristics of the HTHE. The surface area density of the tested HTHE is 6 times higher than that of the bare bayonet tube heat exchanger. The experimental results indicate that the mass flow rate on both sides and inlet temperature on the fuel gas side have a significant effect on the heat transfer rate and effectiveness, while the pressure drop ratios are mainly affected by the mass flow rate rather than the inlet temperature. Comparison between the tested HTHE and the similar HTHE without fins indicates that the proposed HTHE has a significant potential to improve the comprehensive heat transfer performance.  相似文献   

13.
In this paper, 3-D numerical simulations were performed for laminar heat transfer and fluid flow characteristics of wavy fin-and-tube heat exchanger by body-fitted coordinates system. The effect of four factors were examined: Reynolds number, fin pitch, wavy angle and tube row number. The Reynolds number based on the tube diameter varied from 500 to 5000, the fin pitch from 0.4 to 5.2 mm, the wavy angle from 0° to 50°, and the tube row range from 1 to 4. The numerical results were compared with experiments and good agreement was obtained. The numerical results show that with the increasing of wavy angles, decreasing of the fin pitch and tube row number, the heat transfer of the finned tube bank are enhanced with some penalty in pressure drop. The effects of the four factors were also analyzed from the view point of field synergy principle which says that the reduction of the intersection angle between velocity and fluid temperature gradient is the basic mechanism for enhance convective heat transfer. It is found that the effects of the four factors on the heat transfer performance of the wavy fin-and-tube exchangers can be well described by the field synergy principle.  相似文献   

14.
The tube bank fin is commonly used to increase the area of the heat transfer surface with a small heat transfer coefficient of a heat exchanger. If vortex generators (VGs) are punched on the fin surface, the heat transfer performance of the fin can be improved. This paper focused on the effect of transversal tube pitch on the local heat transfer performance of the three-row flat tube bank fin mounted with VGs. On the fin surface, constructing the flow channel but without mounted VGs, the transversal tube pitch was greater, and the span averaged Nusselt number downstream was larger because fewer interactions of vortices would be generated from different VGs located upstream. When the area goodness factor was used as the criteria on the condition of one tube unit of heat exchanger for commonly used fin materials and fin thickness, the transversal tube pitch has considerable effect on the heat transfer enhancement of VGs. Large transversal tube pitch is more sensitive to fin material than to fin thickness.  相似文献   

15.
The effect of inclination angle on the louver finned tube heat exchanger subject to natural convection condition is reported in this study. It is found that the inclination angle plays an importance role on the performance of the louver finned heat exchanger. Performance of the heat exchanger is associated with the interactions between fin, louver, tube, and inclination angle. The heat transfer performance generally decreases with the rise of the inclination angle. This decrease of heat transfer performance is due to the blockage fin and its reversed heat dissipating direction against the raising air. However, at an inclination angle such as 30–45°, a considerable increase of heat transfer performance is seen. This is because appreciable amount of air flow was directed by the louver, causing a “louver-directed” phenomenon as that of in forced convection. With a further increase of inclination angle, the blockage effect caused by the fin is so strong as to offset the “louver-directed” phenomenon. Unlike those shown in force convection, the heat transfer performance decreased with the number of tube row.  相似文献   

16.
The tube bank fin is commonly used to increase the area of the heat transfer surface with a small heat transfer coefficient of a heat exchanger. If vortex generators (VGs) are punched on the fin surface, the heat transfer performance of the fin can be improved. This paper focused on the effect of transversal tube pitch on the local heat transfer performance of the three-row flat tube bank fin mounted with VGs. On the fin surface, constructing the flow channel but without mounted VGs, the transversal tube pitch was greater, and the span averaged Nusselt number downstream was larger because fewer interactions of vortices would be generated from different VGs located upstream. When the area goodness factor was used as the criteria on the condition of one tube unit of heat exchanger for commonly used fin materials and fin thickness, the transversal tube pitch has considerable effect on the heat transfer enhancement of VGs. Large transversal tube pitch is more sensitive to fin material than to fin thickness.  相似文献   

17.
This work considers an optimum design problem for the different constraints involved in the designing of a shell-and-tube heat exchanger consisting of longitudinally finned tubes. A Matlab simulation has been employed using the Kern's method of design of extended surface heat exchanger to determine the behavior on varying the values of the constraints and studying the overall behavior of the heat exchanger with their variation for both cases of triangular and square pitch arrangements, along with the values of pressure drop. It was found out that an optimum fin height existed for particular values of shell and tube diameters when the heat transfer rate was the maximum. Moreover it was found out that the optimum fin height increased linearly with the increase in tube outer diameter. Further studies were also performed with the variation of other important heat exchanger design features and their effects were studied on the behavior of overall performance of the shell-and-tube heat exchanger. The results were thereby summarized which would proclaim to the best performance of the heat exchanger and therefore capable of giving a good idea to the designer about the dimensional characteristics to be used for designing of a particular shell and tube heat exchanger.  相似文献   

18.
In the present study an experimental investigation of the mixed convection heat transfer in a coil-in-shell heat exchanger is reported for various Reynolds and Rayleigh numbers, various tube-to-coil diameter ratios and dimensionless coil pitch. The purpose of this article is to assess the influence of the tube diameter, coil pitch, shell-side and tube-side mass flow rate over the performance coefficient and modified effectiveness of vertical helical coiled tube heat exchangers. The calculations have been performed for the steady-state and the experiments were conducted for both laminar and turbulent flow inside coil. It was found that the mass flow rate of tube-side to shell-side ratio was effective on the axial temperature profiles of heat exchanger. The results also indicate that the ? − NTU relation of the mixed convection heat exchangers was the same as that of a pure counter-flow heat exchanger.  相似文献   

19.
A new type of aluminum heat exchanger with integrated fin and micro-channel has been proposed. The air-side heat transfer and flow characteristics of the integrated fin and micro-channel heat exchanger are systematically analyzed by a 3D numerical simulation. The effect of flow depth, fin height, fin pitch and fin thickness at different Reynolds number is evaluated by calculating Colburn factor j and Fanning friction factor f. A parametric study method is used to analyze the fin designed parameters affecting the performance of the heat exchanger. The results show that the contribution ratio of the fin geometries in descending order is flow depth, fin pitch, fin height and fin thickness. The air-side performance of the integrated fin and micro-channel heat exchanger is compared with that of the multi-louver fin micro-channel heat exchanger and the wavy fin micro-channel heat exchanger.  相似文献   

20.
In this paper an analysis of laminar heat transfer and fluid flow in a wavy fin-and-tube heat exchanger has been carried out. Three-dimensional (3D) numerical simulation results of a circular tube heat exchanger were compared with published numerical and experimental results. The computational fluid dynamics (CFD) procedure was validated by comparing average Nusselt numbers, and good agreement between published and calculated results has been accomplished. The influence of inlet air velocity, varying from 0.5 to 5 m s?1, as well as fin pitch, varying from 0.4 to 4 mm, on heat transfer and pressure drop conditions has been studied. The results have shown that there is an optimal fin pitch for each air velocity, which gives the best heat exchanger performance from the heat transfer point of view.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号