首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
卷积神经网络的发展使得图像验证码已经不再安全.基于卷积神经网络中存在的通用对抗扰动,提出了一种图像验证码的保护方法.提出了一种快速生成通用对抗扰动的算法,将方向相似的对抗扰动向量进行叠加以加快生成通用对抗扰动的速度.基于此算法设计了图像验证码的保护方案,将通用对抗扰动加入到验证码的图像中使其无法被卷积神经网络模型识别....  相似文献   

2.
在人机智能交互中,让机器自动识别验证码是机器模拟人的一项基础技术。基于文本的验证码识别一般先对验证码图片进行预处理,然后切割,最后对字符分类识别。字符切割的准确程度直接影响最终识别结果。提出一种对抗学习方法识别文本型验证码。先训练一个Pix2pix网络对验证码图片进行预处理,然后对抗训练出一对分割和识别网络。分割网络不仅能分割粘贴字符,而且可以筛选出难以分割的验证码结果。识别网络采用上下文相关的多通道卷积网络,能有效解决分割过程中因信息丢失而无法识别的问题。实验结果表明,该方法能提高文本验证码识别的准确率。  相似文献   

3.
4.
通用对抗攻击只需向任意输入添加一个固定的扰动序列,就可以成功混淆文本分类器,但是其会不加区分地攻击所有类别的文本样本,容易引起防御系统的注意。为了实现攻击的隐蔽性,文中提出了一种简单高效的类别区分式通用对抗攻击方法,突出对目标类别的文本样本有攻击效果,并尽量对非目标类别不产生影响。在白盒攻击的场景下,利用扰动序列在每个批次上的平均梯度搜索得到多个候选扰动序列,选择损失最小的扰动序列进行下一轮迭代,直到没有新的扰动序列产生。在4个公开的中英文数据集以及神经网络模型TextCNN和BiLSTM上进行了大量的实验,以评估所提方法的有效性,实验结果表明,该攻击方法可以实现对目标类别和非目标类别的区分式攻击,而且具有一定的迁移性。  相似文献   

5.
互联网安全中,验证码是安全措施中的第一道屏障.现代高科技技术验证码识别,引起不法分子利用和搭建打码平台.他们快速训练和识别验证码,从而造成很多种验证码被破解,为网络黑产提供了高效的保障.主要讲述现代社会的高新技术破解验证码以及针对现代的高新技术采取有效措施去避免和减少验证码被破解两个方面.  相似文献   

6.
葛佳伟  王娟  石磊  陈丁 《智能安全》2023,2(2):48-56
大量的研究表明,由深度学习构成的计算机视觉模型容易遭受对抗样本的攻击。攻击者通过在样本中加入一些细微的扰动,可使深度学习模型出现判断错误,从而引发严重后果。本文主要总结了计算机视觉中对抗攻击手段与主动防御措施,分类与比较了一些典型方法。最后,结合对抗样本生成和防御技术发展的现状,提出了该领域的挑战和展望。  相似文献   

7.
深度学习模型在图像分类领域的能力已经超越了人类,但不幸的是,研究发现深度学习模型在对抗样本面前非常脆弱,这给它在安全敏感的系统中的应用带来了巨大挑战。图像分类领域对抗样本的研究工作被梳理和总结,以期为进一步地研究该领域建立基本的知识体系,介绍了对抗样本的形式化定义和相关术语,介绍了对抗样本的攻击和防御方法,特别是新兴的可验证鲁棒性的防御,并且讨论了对抗样本存在可能的原因。为了强调在现实世界中对抗攻击的可能性,回顾了相关的工作。在梳理和总结文献的基础上,分析了对抗样本的总体发展趋势和存在的挑战以及未来的研究展望。  相似文献   

8.
近年来,深度学习算法在各个领域都取得了极大的成功,给人们的生活带来了极大便利。然而深度神经网络由于其固有特性,用于分类任务时,存在不稳定性,很多因素都影响着分类的准确性,尤其是对抗样本的干扰,通过给图片加上肉眼不可见的扰动,影响分类器的准确性,给深度神经网络带来了极大的威胁。通过对相关对抗样本的研究,该文提出一种基于白盒攻击的对抗样本生成算法DCI-FGSM(Dynamic Change Iterative Fast Gradient Sign Method)。通过动态更新梯度及噪声幅值,可以防止模型陷入局部最优,提高了生成对抗样本的效率,使得模型的准确性下降。实验结果表明,在MINIST数据集分类的神经网络攻击上DCI-FGSM取得了显著的效果,与传统的对抗样本生成算法FGSM相比,将攻击成功率提高了25%,具有更高的攻击效率。  相似文献   

9.
10.
字符型验证码作为常见的验证码类型,被广泛应用在各种网络平台,作为一种防止自动化脚本入侵的信息安全手段.针对这种验证码识别问题提出了一种基于卷积神经网络来识别字符型图片验证码的方法.采用TensorFlow深度学习框架对卷积神经网络模型进行训练,将灰度化的验证码图像作为输入,通过验证码数据集进行实验.结果表明,该模型对识...  相似文献   

11.
验证码安全性是保障网络安全的重要一环,本文利用深度学习,提出长短期记忆(Long Short-Term Memory, LSTM)网络和连接时序分类(Connectionist Temporal Classification, CTC)模型对主流的验证码图片进行智能识别,利用开源CAPTCHA验证码库生成数据集,简化验证码识别模型,统一语音识别和文本识别方法,实现端到端模型识别。本文提出的方法在较小训练集情况下有更优秀的性能。  相似文献   

12.
为了解决信号领域针对人工智能对抗攻击缺少全面评估的平台、针对图像人工智能对抗攻击的分析指标无法完全适用于信号领域的问题,提出了一个信号人工智能对抗攻击综合分析平台。考虑信号与图像之间的区别,从误分类、不可感知性、信号特性、计算代价4个方面着手,提出了10种攻击评价指标对当下常用的8种攻击方法进行全面的评估。研究结果表明个别攻击方法在信号上的攻击性能表现有别于图像,攻击方法的误分类与不可感知性、信号特性以及计算代价之间也存在相互限制的关系,这可以为我们更好地理解及防御此类对抗攻击提供见解。  相似文献   

13.
针对深度学习图像隐私泄露等问题,分析了基于深度学习模型的对抗攻击方法。使用对抗攻击生成对抗样本,能够保护隐私。但是针对检索系统目标对抗攻击的方法,会受到目标样本数量与质量的影响,从而导致攻击效果不佳。通过基于深度学习模型的对抗攻击能够使目标检索精准率作为对样本质量衡量的权重,通过目标类中的样本特征实现加权聚合,得到类特征的最终攻击目标。通过实验结果证明,能够提高检索精准度。  相似文献   

14.
对抗样本是被添加微小扰动的原始样本,用于误导深度学习模型的输出决策,严重威胁到系统的可用性,给系统带来极大的安全隐患。为此,详细分析了当前经典的对抗攻击手段,主要包括白盒攻击和黑盒攻击。根据对抗攻击和防御的发展现状,阐述了近年来国内外的相关防御策略,包括输入预处理、提高模型鲁棒性、恶意检测。最后,给出了未来对抗攻击与防御领域的研究方向。  相似文献   

15.
深度学习在众多领域取得了巨大成功。然而,其强大的数据拟合能力隐藏着不可解释的“捷径学习”现象,从而引发深度模型脆弱、易受攻击的安全隐患。众多研究表明,攻击者向正常数据中添加人类无法察觉的微小扰动,便可能造成模型产生灾难性的错误输出,这严重限制了深度学习在安全敏感领域的应用。对此,研究者提出了各种对抗性防御方法。其中,对抗训练是典型的启发式防御方法。它将对抗攻击与对抗防御注入一个框架,一方面通过攻击已有模型学习生成对抗样本,另一方面利用对抗样本进一步开展模型训练,从而提升模型的鲁棒性。为此,本文围绕对抗训练,首先,阐述了对抗训练的基本框架;其次,对对抗训练框架下的对抗样本生成、对抗模型防御性训练等方法与关键技术进行分类梳理;然后,对评估对抗训练鲁棒性的数据集及攻击方式进行总结;最后,通过对当前对抗训练所面临挑战的分析,本文给出了其未来的几个发展方向。  相似文献   

16.
近年来,随着以深度学习为代表的人工智能技术的快速发展和广泛应用,人工智能正深刻地改变着社会生活的各方面.然而,人工智能模型也容易受到来自精心构造的"对抗样本"的攻击.通过在干净的图像或视频样本上添加微小的人类难以察觉的扰动,就能够生成可以欺骗模型的样本,进而使多媒体模型在推理过程中做出错误决策,为多媒体模型的实际应用部...  相似文献   

17.
深度学习技术在不同领域有着广泛的应用, 然而一个训练好的深度学习模型很容易受到干扰而得出错误的结果, 从而引发严重的安全问题. 为了检验深度学习模型的抗干扰性, 提高模型的安全性和鲁棒性, 有必要使用对抗样本进行对抗评估和对抗训练. 有目标的黑盒对抗样本的生成方法具有较好的实用性, 是该领域的研究热点之一. 有目标的黑盒对抗样本生成的难点在于, 如何在保证攻击成功率的前提下提高对抗样本的生成效率. 为了解决这一难点, 本文提出了一种基于快速边界攻击的有目标攻击样本生成方法. 该方法包括线上的搜索和面上的搜索两步. 线上的搜索由单侧折半法来完成, 用于提高搜索效率; 面上的搜索通过自适应调节搜索半径的随机搜索完成, 用于提高搜索的广度. 通过对5组图片的实验结果验证了方法的可行性.  相似文献   

18.
深度学习方法已被广泛应用于恶意软件检测中并取得了较好的预测精度,但同时深度神经网络容易受到对输入数据添加细微扰动的对抗攻击,导致模型输出错误的预测结果,从而使得恶意软件检测失效。针对基于深度学习的恶意软件检测方法的安全性,提出了一种面向恶意软件检测模型的黑盒对抗攻击方法。首先在恶意软件检测模型内部结构参数完全未知的前提下,通过生成对抗网络模型来生成恶意软件样本;然后使生成的对抗样本被识别成预先设定的目标类型以实现目标攻击,从而躲避恶意软件检测;最后,在Kaggle竞赛的恶意软件数据集上展开实验,验证了所提黑盒攻击方法的有效性。进一步得到,生成的对抗样本也可对其他恶意软件检测方法攻击成功,这验证了其具有较强的攻击迁移性。  相似文献   

19.
车牌识别系统的黑盒对抗攻击   总被引:1,自引:0,他引:1  
深度神经网络(Deep neural network, DNN)作为最常用的深度学习方法之一, 广泛应用于各个领域. 然而, DNN容易受到对抗攻击的威胁, 因此通过对抗攻击来检测应用系统中DNN的漏洞至关重要. 针对车牌识别系统进行漏洞检测, 在完全未知模型内部结构信息的前提下展开黑盒攻击, 发现商用车牌识别系统存在安全漏洞. 提出基于精英策略的非支配排序遗传算法(NSGA-II)的车牌识别黑盒攻击方法, 仅获得输出类标及对应置信度, 即可产生对环境变化较为鲁棒的对抗样本, 而且该算法将扰动控制为纯黑色块, 可用淤泥块代替, 具有较强的迷惑性. 为验证本方法在真实场景的攻击可复现性, 分别在实验室和真实环境中对车牌识别系统展开攻击, 并且将对抗样本用于开源的商业软件中进行测试, 验证了攻击的迁移性.  相似文献   

20.
基于生成式对抗网络的通用性对抗扰动生成方法   总被引:1,自引:0,他引:1  
深度神经网络在图像分类应用中具有很高的准确率,然而,当在原始图像中添加微小的对抗扰动后,深度神经网络的分类准确率会显著下降。研究表明,对于一个分类器和数据集存在一种通用性对抗扰动,其可对大部分原始图像产生攻击效果。文章设计了一种通过生成式对抗网络来制作通用性对抗扰动的方法。通过生成式对抗网络的训练,生成器可制作出通用性对抗扰动,将该扰动添加到原始图像中制作对抗样本,从而达到攻击的目的。文章在CIFAR-10数据集上进行了无目标攻击、目标攻击和迁移性攻击实验。实验表明,生成式对抗网络生成的通用性对抗扰动可在较低范数约束下达到89%的攻击成功率,且利用训练后的生成器可在短时间内制作出大量的对抗样本,利于深度神经网络的鲁棒性研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号