首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对无人机航拍图像中目标小、尺度不一和背景复杂等导致检测精度低的问题,提出一种基于改进YOLOv5的无人机航拍图像目标检测算法DY-YOLOv5。该算法在检测头部分利用具有多重注意力机制的目标检测头方法Dynamic Head,提升检测头在复杂背景下的检测表现。在原模型neck部分增加一次上采样和Concat操作,并执行一个包含极小、小、中目标的多尺度特征检测,提升模型对中、小目标的特征提取能力。引入密集卷积网络DenseNet,将其与YOLOv5s主干网络的C3模块进行融合,提出C3_DenseNet模块,以加强特征传递并预防模型过拟合。在VisDrone2019数据集上应用DY-YOLOv5算法,平均精度均值(mAP)达到了43.9%,较原YOLOv5算法提升了11.4个百分点。召回率(Recall)为41.7%,较原算法提升了9.0个百分点。实验结果证明,改进算法显著提高了无人机航拍图像目标检测的精度。  相似文献   

2.
针对现有目标检测器在处理无人机航拍图像上存在的小目标检测精度不高的问题,提出一种具有目标感知特征增强的改进YOLOv4(yolo only look once)航拍检测算法。通过深度级联的方式构建瓶颈连接注意力模块,将其嵌入至YOLOv4主干网络,强化对基础特征的提取;为充分有效地利用目标上下文,对原始网络中特征金字塔输出的多尺度特征进行聚合与校准细化;对于小目标定位不够精确的问题,通过闭环反馈与融合策略重新设计检测头部,增强小目标位置信息的特征响应。该方法在VisDrone航拍数据集上的实验结果表明,检测精度相比YOLOv4提高了4.24%,其中小目标的精度提升了约2%。  相似文献   

3.
针对遥感影像目标检测中复杂背景的干扰,小目标检测效果差等问题,提出一种改进YOLOv5(you only look once v5)的遥感影像目标检测模型。针对卷积神经网络下采样导致的特征图中包含的小目标信息较少或消失的问题,引入特征复用以增加特征图中的小目标特征信息;在特征融合阶段时使用EMFFN(efficient multi-scale feature fusion network)的特征融合网络代替原有的PANet(path aggregation network),通过添加跳跃连接以及跨层连接高效融合不同尺度的特征图信息;为了应对复杂背景带来的检测效果变差的问题,提出了一种包含通道与像素的双向特征注意力机制(bidirectional feature attention mechanism,BFAM),以提高模型在复杂背景下的检测效果。实验结果表明,改进后的YOLOv5模型在DIOR数据集与RSOD数据集中分别取得了87.8%和96.6%的检测精度,相较原算法分别提高5.2和1.6个百分点,有效提高了复杂背景下的小目标检测精度。  相似文献   

4.
针对航拍图像中的车辆目标尺度小、特征不明显导致目标检测困难的问题,提出一种改进YOLOv3的航拍车辆目标检测方法。将空间金字塔池化模块引入到特征提取网络中,丰富卷积特征的表达能力;设计4个不同尺度的卷积特征金字塔,并通过卷积特征融合机制来实现对多层级卷积特征的融合,在融合后的卷积特征金字塔上进行目标检测。在航拍图像车辆目标检测数据集上的测试结果表明,与原YOLOv3相比,改进后的算法能够有效地提高对航拍图像中车辆目标检测效果的查全率以及查准率,并将平均均值精度(mean average precision, mAP)提升了4.5百分点。  相似文献   

5.
针对无人机飞行时与目标距离较远,被拍摄的目标大小有明显的差异且存在被物体遮挡等问题,提出一种基于YOLOv5s的无人机视角下小目标检测改进算法BD-YOLO。在特征融合网络中采用双层路由注意力(bi-level routing attention,BRA),其以动态稀疏的方式过滤特征图中最不相关的特征,保留部分重要区域特征,从而提高模型特征提取的能力;由于特征图经过多次下采样后会丢失大量位置信息和特征信息,因此采用一种结合注意力机制的动态目标检测头DyHead(dynamic head),该检测头通过尺度感知、空间感知和任务感知的三者统一,以实现更强的特征表达能力;使用Focal-EIoU损失函数,来解决YOLOv5s中CIoU Loss计算回归结果不准确的问题,从而提高模型对小型目标的检测精度。实验结果表明,在VisDrone2019-DET数据集上,BD-YOLO模型较YOLOv5s模型在平均精度(mAP@0.5)指标上提高了0.062,对比其他主流模型对于小目标的检测都有更好的效果。  相似文献   

6.
针对无人机航拍图像目标检测中视野变化大、时空信息复杂等问题,文中基于YOLOv5(You Only Look Once Version5)架构,提出基于图像低维特征融合的航拍小目标检测模型.引入CA(Coordinate Attention),改进MobileNetV3的反转残差块,增加图像空间维度信息的同时降低模型参数量.改进YOLOv5特征金字塔网络结构,融合浅层网络中的特征图,增加模型对图像低维有效信息的表达能力,进而提升小目标检测精度.同时为了降低航拍图像中复杂背景带来的干扰,引入无参平均注意力模块,同时关注图像的空间注意力与通道注意力;引入VariFocal Loss,降低负样本在训练过程中的权重占比.在VisDrone数据集上的实验验证文中模型的有效性,该模型在有效提升检测精度的同时明显降低复杂度.  相似文献   

7.
针对地理空间遥感图像中检测目标存在多尺度特性、形态多变以及小目标判别特征过少等造成检测识别精度不高的问题,提出了基于多尺度下遥感小目标多头注意力检测算法YOLO-StrVB。对网络结构进行重构,搭建多尺度网络模型,增加目标检测层,提高特征提取网络下遥感小目标模型不同尺度下的检测能力;加入双向特征金字塔网络(Bi-FPN)进行多尺度特征融合,提高双向跨尺度连接和加权特征融合;在YOLOv5网络末端融合Swin Transformer多头注意力机制块,提升感受野适应目标识别任务的多尺度融合关系,优化主干网络;使用Varifocal loss对网络进行训练,提升遥感密集检测小目标的存在置信度和定位精度,并选用CIoU作为边界框回归的损失函数,提高感知分类得分(IACS)的边框回归精度。通过在遥感目标数据集NWPU VHR-10上的实验验证,对比YOLOv5原模型的mAP提高了3.05个百分点,能有效提高小目标的检测精度,达到了对地理空间遥感图像中小目标检测的鲁棒性。  相似文献   

8.
由于无人机航拍图像的背景较为复杂,小尺寸目标较多,不同目标的尺度差异较大,且算法部署于资源有限的边缘设备上,难以同时兼顾检测的准确性和实时性。一方面,传统的单阶段检测算法可能会使特征图的融合不充分,造成目标特征信息的丢失,导致检测精度不高。另一方面,复杂度较高的两阶段检测算法在边缘设备上又难以满足实时性的要求。针对以上问题,基于YOLOv5框架提出了一种改进的CC-YOLOv5算法。首先,在Backbone部分集成CBAM模块,丰富网络获取的目标特征信息,降低网络的复杂度;其次,通过改进YOLOv5的FPN层,使其能够更好地进行特征融合,提升检测性能。最后,实验结果表明,在VisDrone2019数据集上,mAP达到了33.5%,比YOLOv5m提高了3.3个百分点;在边缘计算设备Nvidia Jetson Nano上,针对640×480图像的平均检测时间为0.095 s,满足了实时性要求。  相似文献   

9.
针对目标检测过程中存在的小目标漏检问题,提出一种基于注意力机制和多尺度上下文信息的改进YOLOv5目标检测算法。首先,在特征提取结构中加入多尺度空洞可分离卷积模块(MDSCM)以提取多尺度特征信息,在增大感受野的同时避免小目标信息的丢失;其次,在主干网络中添加注意力机制,并在通道信息中嵌入位置感知信息,进一步增强算法的特征表达能力;最后,使用Soft-NMS(Soft-Non-Maximum Suppression)代替YOLOv5使用的非极大值抑制(NMS),降低检测算法的漏检率。实验结果表明,改进算法在PASCAL VOC数据集、DOTA航拍数据集和DIOR光学遥感数据集上的检测精度分别达到了82.80%、71.74%和77.11%,相较于YOLOv5,分别提高了3.70、1.49和2.48个百分点;而且它对图像中小目标的检测效果更好。因此,改进的YOLOv5可以更好地应用到小目标检测场景中。  相似文献   

10.
小目标检测在计算机视觉领域具有重要意义,但现有方法在应对小目标的尺度变化、目标密集和无规则排列等挑战时经常出现漏检和误检的问题。为解决这些问题,提出基于改进YOLOv5算法的ATO-YOLO。为提升检测模型的特征表达能力,提出一种结合注意力机制的自适应特征提取模块(adaptive feature extraction,AFE),通过动态调整权重分配突出关键目标的特征表示,提高目标检测任务在不同场景下的准确性和鲁棒性。设计一种三重特征融合机制(triple feature fusion,TFF),能够在不同尺度下充分利用多尺度信息,将多个尺度的特征图融合,以获取更全面的目标特征,提升对小目标的检测效果。引入一种输出重构模块(output reconstruction,ORS),通过去除大目标检测层并增加小目标检测层,实现精确定位和识别小目标,并且相对于原模型复杂度更低,检测速度更快。实验结果表明,ATO-YOLO算法在VisDrone数据集上的mAP@0.5达到了38.2%,较原YOLOv5提升了6.1个百分点,且FPS较改进前提升了4.4%,能够快速准确地对小目标进行检测。  相似文献   

11.
针对无人机航拍检测任务中小目标检测精度低的问题, 提出一种基于YOLOv8n的目标检测算法(SFE-YOLO). 首先, 嵌入浅层特征增强模块, 将输入特征的浅层空间信息与颈部获取的深层语义信息融合, 以增强小目标特征表示能力, 并使用全局上下文块(GC-Block)对融合信息进行重校准, 抑制背景噪声. 其次, 引入可变形卷积来代替C2F中的部分标准卷积, 提高网络对几何变化的适应性. 再次, 引入ASPPF模块, 融合平均池化技术, 增强模型对多尺度特征的表达并降低漏检率. 最后, 在颈部网络的基础上嵌入中尺度特征合成层, 融合主干网络中更多的中间特征, 使不同尺度的特征过渡更平滑, 并通过跳跃连接增强特征重用性. 该模型在数据集VisDrone2019和VOC2012上进行验证, mAP@0.5值达到30.5%和67.3%, 相较于基线算法YOLOv8n提升了3.6%和0.8%, 能够提升无人机图像目标检测性能, 同时具有较好的泛化性.  相似文献   

12.
为解决复杂施工场景下的小目标检测效果不佳和漏检问题,提出一种基于YOLOv4的改进算法。在检测网络中设计多尺度CAU和SAU上下文特征融合机制,利用全新的特征融合方式增强网络多尺度空间和通道信息表征,在此基础上改善网络特征融合性能。设计CSP_F跨阶段特征融合模块代替原有普通卷积块(CBL*5),防止检测网络梯度消失和网络参数计算量过大。改进模型类别损失函数并进行实验验证,其结果表明,改进算法能满足不同场景检测要求,对小目标有较好检测效果。  相似文献   

13.
针对传统YOLOv3模型在小目标检测和跟踪方面存在的不足,提出了一种基于多尺度特征融合的改进型YOLOv3模型。该模型通过引入特征金字塔模块和预测分支,有效地提升了对小尺度目标的感知能力和定位精度。本研究使用MOTChallenge数据集对该模型进行实验评估,并与标准YOLOv3模型进行了对比。实验结果表明,基于多尺度特征融合的YOLOv3模型在精确率、召回率和平均精确度等评价指标上均取得了显著提升。  相似文献   

14.
针对YOLOv5在遥感图像目标检测中未能考虑到遥感图像背景复杂、检测目标较小且图像中目标语义信息占比过低导致的检测效果不佳和易出现误检漏检等问题,提出了一种改进YOLOv5的遥感图像目标检测方法。将轻量级的通道注意力机制引入到原始YOLOv5的特征提取和特征融合网络的C3模块中,以提升网络局部特征捕获与融合能力;强化对遥感图像的多尺度特征表达能力,通过增加一个融合浅层语义信息的细粒度检测层来提高对小目标的检测效果;使用Copy-Paste数据增强方法来丰富训练样本数量,在不增加模型计算量的情况下可进一步解决遥感图像背景信息占比过高而目标区域占比过低的问题。实验结果表明,改进YOLOv5在公开的DOTA和DIOR遥感图像数据集上mAP结果分别达到0.757和0.759。该方法较原始YOLOv5可提高0.017和0.059,相比于其他典型遥感目标检测方法在精度上也有所提升,证明了改进YOLOv5方法的有效性。  相似文献   

15.
目的 基于深度卷积神经网络的目标检测模型易受复杂环境(遮挡、光照、远距离、小目标等)影响导致漏检、误检和目标轮廓特征模糊的问题,现有模型难以直接泛化到航拍场景下的小目标检测任务。为有效解决上述问题,提出一种融合非临近跳连与多尺度残差结构的小目标车辆检测算法(non-adjacent hop network you only look once version 5s multi-scale residual edge contour feature extraction strategy,NHN-YOLOv5s-MREFE)。方法 首先,设计4种不同尺度的检测层,根据自身感受野大小,针对性地负责不同尺寸车辆的检测。其次,借鉴DenseNet密集跳连的思想,构建一种非临近跳连特征金字塔结构(non-adjacent hop network,NHN),通过跳连相加策略,在强化非临近层次信息交互的同时融合更多未被影响的原始信息,解决位置信息在传递过程中被逐渐稀释的问题,有效降低了模型的误检率。然后,以减少特征丢失为前提,引入反卷积和并行策略,通过参数学习实现像素填充和突破每1维度信息量的方式扩充小目标细节信息。接着,设计一种多尺度残差边缘轮廓特征提取策略(multi-scale residual edge contour feature extraction strategy,MREFE),遵循特征逐渐细化的原则,构建多尺度残差结构,采用双分支并行的方法捕获不同层级的多尺度信息,通过多尺度下的高语义信息与初始浅层信息的逐像素作差实现图像边缘特征提取,进而辅助网络模型完成目标分类。最后,采用K-Means++算法使聚类中心分散化,促使结果达到全局最优,加速模型收敛。结果 实验结果表明,非临近跳连的特征金字塔与多尺度残差结构的多模态融合策略,在提升模型运行效率,降低模型计算资源消耗的同时,有效提升了小目标检测的准确性和鲁棒性。通过多场景、多时段、多角度的样本数据增强,强化了模型在不同场景下的泛化能力。最后,在十字路口、沿途车道双场景下包含多种车辆类型的航拍图像数据集上,对比分析4种主流的目标检测方法,本文算法的综合性能最优。相较于基准模型(YOLOv5s),精确率、召回率和平均精度均值分别提升了13.7%、1.6%和8.1%。结论 本文算法可以较好地平衡检测速度与精度,以增加极小的参数量为代价,显著地提升了检测精度,并能够自适应复杂的交通环境,满足航拍场景下小目标车辆检测的实时性需求,在交通流量、密度等参数的测量和统计,车辆定位与跟踪等场景下有较高的应用价值。  相似文献   

16.
针对多尺度目标检测准确率偏低的问题,提出了一种基于YOLOv5s改进的多尺度目标检测算法。在YOLOv5s主干网络与Neck网络之间融合CBAM模块,增强模型对多尺度目标重要特征信息的提取能力;同时,在模型的Head部分增加多尺度目标检测结构,提高不同尺度目标检测精度;训练时采用CIoU替代GIoU损失函数,以提高模型收敛能力,实现高精度目标定位。数据集来源于实际场景中采集并增强的4万余张图像。实验结果表明,改进后的模型对行人、车辆和人脸的多尺度目标检测平均精度达92.1%,相比未改进YOLOv5s算法提升了3.4%。模型的收敛性好,对密集场景的目标,小尺度目标检测准确度更加突出。  相似文献   

17.
在无人机(UAV)目标检测任务中,存在因检测目标尺度小、检测图像背景复杂等原因导致的漏检、误检问题。针对上述问题,提出改进YOLOv8s的无人机图像目标检测算法。首先,针对无人机拍摄目标普遍为小目标的应用场景,减少算法骨干网络(Backbone)层数,增大待检测特征图尺寸,使得网络模型更专注于微小目标;其次,针对数据集普遍存在一定数量低质量示例影响训练效果的问题,引入Wise-Io U损失函数,增强数据集训练效果;再次,通过引入上下文增强模块,获得小目标在不同感受野下的特征信息,改善算法在复杂环境下对小目标的定位和分类效果;最后,设计空间-通道滤波模块,增强卷积过程中目标的特征信息,滤除无用的干扰信息,改善卷积过程中部分微小目标特征信息被淹没、丢失的现象。在Vis Drone2019数据集上的实验结果表明,该算法的平均检测精度(m AP@0.5)达到45.4%,相较于原始YOLOv8s算法提高7.3个百分点,参数量减少26.13%。在相同实验条件下,相比其他常见小目标检测算法,检测精度和检测速度也有一定提升。  相似文献   

18.
针对遥感图像中背景复杂目标、车辆小导致的成像模糊的目标漏检问题,提出一种基于YOLOv5s的改进模型。改进模型设计一种新的主干网络结构:改进模型的主干特征提取选用RepVGG网络,同时在主干网络中加入注意力机制CoordAttention来提高模型小目标的感知能力。增加多尺度特征融合,提高改进模型对于小目标的检测精度,边框回归的损失函数选择使用DIoU,帮助改进模型实现更加精准定位。实验结果表明,改进后的YOLOv5模型在遥感图像的目标检测,相较于原始模型在小目标车辆中检测精度提升5.3个百分点,与Faster R-CNN相比mAP提升16.88个百分点。改进后的模型与主流的检测算法相比能有较大的检测精度提升,相较于原始的YOLOv5s模型在遥感图像小车辆检测有更好的检测精度。  相似文献   

19.
针对无人机航拍场景下的实时目标检测任务,以YOLOv5为基础进行改进,给出了一种轻量化的目标检测网络YOLOv5-tiny.通过将原CSPDarknet53骨干网络替换为MobileNetv3,减小了网络模型的参数量,有效提高了检测速度,并进一步通过引入CBAM注意力模块和SiLU激活函数,改善了因网络简化后导致的检测精度下降问题.结合航拍任务数据集VisDrone的特性,优化了先验框尺寸,使用了Mosaic,高斯模糊等数据增强方法,进一步提高了检测效果.与YOLOv5-large网络相比,以降低17.4%的mAP为代价,换取148%的检测效率(FPS)提升,且与YOLOv5s相比,在检测效果略优的情况下,网络规模仅为其60%.  相似文献   

20.
针对小目标检测及目标被遮挡的问题, 本文基于VisDrone2019数据集构建相应交通场景, 提出一种小目标检测算法. 首先, 充分利用主干网络的浅层特征改善小目标漏检的问题, 通过在YOLOv7算法原有的网络结构上增加小目标检测层P2, 并在P2小目标检测层的模型上为特征融合网络添加多层次浅层信息融合模块, 从而提高算法小目标检测效果. 其次, 使用全局上下文模块构建目标与全局上下文的联系, 增强模型区分目标与背景的能力, 改善目标因遮挡而出现特征缺失情况下的被检测效果. 最后, 本文采用专为小目标设计的损失函数NWD代替基线模型中的CIoU损失函数, 从而解决了IoU本身及其扩展对微小物体的位置偏差非常敏感的问题. 实验表明, 改进后的YOLOv7模型在航拍小目标数据集VisDrone2019 (测试集和验证集)上面mAP.5:.95分别有2.3%和2.8%的提升, 取得了十分优异的检测效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号