共查询到20条相似文献,搜索用时 0 毫秒
1.
小目标检测在计算机视觉领域具有重要意义,但现有方法在应对小目标的尺度变化、目标密集和无规则排列等挑战时经常出现漏检和误检的问题。为解决这些问题,提出基于改进YOLOv5算法的ATO-YOLO。为提升检测模型的特征表达能力,提出一种结合注意力机制的自适应特征提取模块(adaptive feature extraction,AFE),通过动态调整权重分配突出关键目标的特征表示,提高目标检测任务在不同场景下的准确性和鲁棒性。设计一种三重特征融合机制(triple feature fusion,TFF),能够在不同尺度下充分利用多尺度信息,将多个尺度的特征图融合,以获取更全面的目标特征,提升对小目标的检测效果。引入一种输出重构模块(output reconstruction,ORS),通过去除大目标检测层并增加小目标检测层,实现精确定位和识别小目标,并且相对于原模型复杂度更低,检测速度更快。实验结果表明,ATO-YOLO算法在VisDrone数据集上的mAP@0.5达到了38.2%,较原YOLOv5提升了6.1个百分点,且FPS较改进前提升了4.4%,能够快速准确地对小目标进行检测。 相似文献
2.
在交通标志检测中,小而稠密的交通标志易受遮挡、恶劣天气等复杂自然环境的影响,导致检测性能较差.针对此问题,提出一种基于注意力机制的多尺度小目标交通标志检测方法.以CSPDarknet53为基础设计了一种新型的特征提取网络,使得输出特征图的分辨率得以增大、目标更易于检测,同时通过反卷积自适应级联结构融合浅层细节信息与深层... 相似文献
3.
4.
针对RetinaNet在遥感目标检测任务中多尺度、密集小目标问题,提出了ACFEM-RetinaNet遥感目标检测算法。针对原主干特征提取不充分的问题,采用Swin Transformer作为主干网络,以提升算法的特征提取能力,提高检测精度。针对遥感图像多尺度问题,提出自适应上下文特征提取模块,使用SK注意力引导不同空洞率的可变形卷积自适应调整感受野、提取上下文特征,改善多尺度目标检测效果。针对遥感图像中密集小目标问题,引入FreeAnchor模块,从极大释然估计的角度设计优化锚框匹配策略,提高检测精度。实验结果表明,在公共遥感图像目标检测数据集RSOD上,ACFEM-RetinaNet算法取得了91.1%的检测精度,相较于原算法提高了4.6个百分点,能更好地应用于遥感图像目标检测。 相似文献
5.
现有基于微调的二阶段小样本目标检测方法对新类特征不敏感,易将新类别误判成与它相似度高的基类,影响模型的检测性能。针对上述问题,提出一种融合多尺度和注意力机制的小样本目标检测(MA-FSOD)算法。首先在骨干网络使用分组卷积和大卷积核提取更具类别区分性的特征,并加入卷积注意力模块(CBAM)实现特征的自适应增强;再通过改进的金字塔网络实现多尺度的特征融合,使候选框生成网络(RPN)可以准确找到感兴趣区域(RoI),从多个尺度向分类头提供更丰富的高质量正样本;最后在微调阶段采用余弦分类头进行分类,降低类内方差。在PASCAL-VOC 2007/2012数据集上与基于候选框编码对比损失的小样本目标检测(FSCE)算法相比,MA-FSOD算法对新类的AP50提升了5.6个百分点;在更具挑战性的MSCOCO数据集中,与Meta-Faster-RCNN相比,10-shot和30-shot对应的AP则分别提升了0.1个百分点和1.6个百分点。实验结果表明,相较于一些主流的小样本目标检测算法,MA-FSOD算法能更有效地缓解误分类问题,实现更高精度的小样本目标检测。 相似文献
6.
针对传统的SSD目标检测算法在进行多尺度目标检测时,存在特征图有效信息弱和困难目标漏检率大等问题,提出一种改进的SSD目标检测算法.首先,在网络特征图输出处引入即插即用的轻量级注意力机制,通过不降维、局部跨通道交互以及核大小自适应选择等操作,在保持网络原始计算量的同时有效突出特征图中关键信息.该模块有利于增强背景信息和... 相似文献
7.
作为一个多任务的学习过程,目标检测相较于分类网络需要更好的特征.基于多尺度特征对不同尺度的目标进行预测的检测器性能已经大大超过了基于单一尺度特征的检测器.同时,特征金字塔结构被用于构建所有尺度的高级语义特征图,从而进一步提高了检测器的性能.但是,这样的特征图没有充分考虑到上下文信息对语义的补充作用.在SSD基准网络的基... 相似文献
8.
9.
针对遥感影像目标检测中复杂背景的干扰,小目标检测效果差等问题,提出一种改进YOLOv5(you only look once v5)的遥感影像目标检测模型。针对卷积神经网络下采样导致的特征图中包含的小目标信息较少或消失的问题,引入特征复用以增加特征图中的小目标特征信息;在特征融合阶段时使用EMFFN(efficient multi-scale feature fusion network)的特征融合网络代替原有的PANet(path aggregation network),通过添加跳跃连接以及跨层连接高效融合不同尺度的特征图信息;为了应对复杂背景带来的检测效果变差的问题,提出了一种包含通道与像素的双向特征注意力机制(bidirectional feature attention mechanism,BFAM),以提高模型在复杂背景下的检测效果。实验结果表明,改进后的YOLOv5模型在DIOR数据集与RSOD数据集中分别取得了87.8%和96.6%的检测精度,相较原算法分别提高5.2和1.6个百分点,有效提高了复杂背景下的小目标检测精度。 相似文献
10.
针对SSD当前存在的小目标漏检以及误检问题,结合反卷积与特征融合思想,提出hgSSD模型。将原SSD特征层反卷积后与较浅层特征结合,实现复杂场景下小目标行人检测。为了保留浅层网络特征,提高算法实时性,节省计算资源,hgSSD模型基础网络使用VGG16,而非更深层的ResNet101。为了加强对小目标的检测,将VGG16中的Conv3_3改进为特征层加入训练。融合后的网络相对于SSD较为复杂,但基本保证实时性,且成功检测到大部分SSD网络漏检的小目标,检测精度相比于SSD模型也有提升。在选择框置信度得分阈值为0.3的情况下,基本检测到SSD漏检小目标。在VOC2007+2012中相对于SSD行人检测的Average Precision值从0.765提升为0.83。 相似文献
11.
与自然图像的检测算法相比较,航空图像的检测存在目标角度随机、目标尺度变化剧烈、小目标密集、图像背景复杂等问题。针对这一系列难题,提出适用于航空图像检测的Trans-YOLOv5算法。修改YOLOv5算法中数据预处理模块以及后处理方法,增加一个目标角度标签的处理,使其适用于目标角度随机的航空图像。针对后续出现的边界问题,引入CSL(Circular Smooth Label,圆形平滑标签)将标签角度回归问题转换为分类问题,提高角度标签检测的精度。针对航空图像小目标检测问题,将Swin Transformer集成于YOLOv5框架中,提升模型对小目标的检测效果,并配合注意力机制模块,提高全局表征能力,使网络模型更加关注于待检测的目标对象。在DOTAv2.0航空图像数据集上的实验结果验证了所提方法的有效性,检测结果达到60.98%mAP,与原YOLOv5算法检测结果相比提高10.85百分点,与官网公布的竞赛最佳结果相比提高2.01百分点。 相似文献
12.
针对一阶段目标检测算法在识别小目标时无法兼顾精度与实时性的问题,提出一种基于多尺度融合单点多盒探测器(SSD)的小目标检测算法。以SSD和DSSD算法的网络结构为基础,设计融合模块以实现Top-Down结构的功能,形成高层网络与低层网络之间的跳跃连接,结合SSD-VGG16扩展卷积特征图以提取多尺度特征,并对不同卷积层、尺度及特征的多元信息进行分类预测与位置回归。在织物瑕疵数据库上的实验结果表明,与SSD、DSSD等算法相比,该算法的检测性能较好,其检测精度达到78.2%,检测速度为51 frame/s,能在保证检测精度的同时提高检测速度。 相似文献
13.
14.
遥感影像中目标的检测问题一直是遥感图像处理领域的热点和难点.传统的检测算法,在解决场景复杂,尺度差异大的目标时性能不高,而使用深度学习很难兼顾遥感目标的准确性和实时性.针对这一问题,设计了一种利用多尺度融合特征检测目标的轻量级网络,并提出一种能够从三个维度上生成像素自适应特征权重的注意力机制帮助提取显著特征,同时采用了... 相似文献
15.
针对显著性目标检测算法中全局和局部信息难以联合表征和目标边界难以细化的问题,提出了一种多尺度Transformer与层次化边界引导的显著性目标检测算法。首先,构建Transformer模型提取全局信息,同时通过自注意力机制获取有判别性的浅层局部特征,对全局和局部信息进行联合表征。然后,引入Tokens-to-Token方法提取多尺度特征,使模型实现尺度变换平滑的编解码。进一步,提出了一种层次化的边界学习策略,引导模型在每个解码特征层提取精细化的显著性目标边界特征,提升显著性目标边界的预测准确性。实验结果表明,提出的算法在四个公开显著性目标检测数据集上均优于八种主流的显著性目标检测算法,并且通过消融实验验证了提出模型和边界学习策略的有效性。 相似文献
16.
在进行目标检测时,小目标会出现漏检或检测效果不佳等问题.本文将YOLOv5算法用于小目标检测,YOLOv5有3个检测头,能够多尺度对目标进行检测,并对数据做了Mosaic数据增强、自适应锚框计算、统一图片尺寸等数据预处理,对小目标有很好的检测效果.基于YOLOv5的基础上进行改进,把CIOU_Loss、DIOU_nms... 相似文献
17.
针对眼睛图像易受光照干扰导致的眼睛部位和瞳孔部位检测不准确及误检漏检的问题,提出基于改进YOLOv5的眼睛及瞳孔检测算法。首先,进行图像预处理,对比了三种图像增强方法,决定运用效果较好的CLAHE(限制对比度自适应直方图均衡化)方法进行图像增强,提高对比度;其次,在YOLOv5网络中引入Swin Transformer模块代替骨干网络的最后一个C3模块和三个预测头中的三个C3模块,提高网络的特征提取能力,提升眼睛部位的检测精度;最后,在YOLOv5网络中通过引入多尺度特征跨层融合机制的方法,增加两个目标预测头,降低网络对眼睛部位和瞳孔部位的漏检率。该文从ELSE标准数据集中的Data setXVIII中选取了受光照程度不同的眼睛数据集2 400张,其中,1 600张为训练集,800张为测试集。实验结果表明,改进后的YOLOv5网络能检测出眼睛整体部位及完整的瞳孔部位,检测置信度也较高,mAP提高了3.2百分点,Recall提高了2.7百分点,且具有较好的实时性。 相似文献
18.
硅藻训练样本量较少时,检测精度偏低,为此在小样本目标检测模型TFA(Two-stage Fine-tuning Approach)的基础上提出一种融合多尺度多头自注意力(MMS)和在线难例挖掘(OHEM)的小样本硅藻检测模型(MMSOFDD)。首先,结合ResNet-101与多头自注意力机制构造一个基于Transformer的特征提取网络BoTNet-101,以充分利用硅藻图像的局部和全局信息;然后,改进多头自注意力为MMS,消除了原始多头自注意力的处理目标尺度单一的局限性;最后,引入OHEM到模型预测器中,并对硅藻进行识别与定位。把所提模型与其他小样本目标检测模型在自建硅藻数据集上进行消融及对比实验。实验结果表明:与TFA相比,MMSOFDD的平均精度均值(mAP)为69.60%,TFA为63.71%,MMSOFDD提高了5.89个百分点;与小样本目标检测模型Meta R-CNN和FSIW相比,Meta R-CNN和FSIW的mAP分别为61.60%和60.90%,所提模型的mAP分别提高了8.00个百分点和8.70个百分点。而且,MMSOFDD在硅藻训练样本量少的条件下能够有效地提高检测模型对硅藻的检测精度。 相似文献
19.
针对遥感图像目标检测任务中存在的目标尺度差异大、检测精度低等问题,提出了一种基于加权策略的改进YOLOv3遥感图像目标检测模型.为提高对遥感图像中小目标的检测精度,增加具有较小感受野的特征图像的检测分支.设计了一种多尺度特征图像自适应加权融合方法,通过挖掘特征提取网络的表征能力,综合利用多尺度特征提高了目标检测精度.采... 相似文献