首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
半监督加权模糊C均值聚类算法   总被引:2,自引:1,他引:1       下载免费PDF全文
江秀勤 《计算机工程》2009,35(17):170-171
对于团状、每类样本数相差较大的数据集,FCM算法和半监督模糊C均值聚类算法都不是最佳聚类方法,因为它们对数据集有等划分趋势。针对这种情况,利用样本点分布密度大小作为权值,结合半监督学习方法,提出半监督点密度加权模糊C均值聚类算法。在半监督学习过程中,对于求极值的问题采用模拟退火算法。结果证明,点密度加权模糊C均值聚类算法确实能提高聚类精度。  相似文献   

2.
时间序列相似度是时间序列数据挖掘的重要研究方向之一。如何利用时间序列相似度对提高时间序列数据聚类有着重要的意义。提出一种基于时间序列相似度的半监督谱聚类算法,通过选取适当的时间序列特征构造相似度与距离,在谱聚类算法的基础上利用标签数据选取初始类簇。实验表明,该算法使具有相似特征的时间序列可以很有效地被聚集到同一类中。  相似文献   

3.
针对传统的模糊C均值聚类算法在进行图像分割时对孤立点、噪声点敏感性较强,聚类耗时随图像变大而快速增长等缺陷,基于临近元素空间距离的模糊C均值聚类算法即SFGFCM算法,采用核化的空间距离公式,计算出空间临近像素与考察像素的相似度Sij,然后用邻近像素灰度加权和计算出邻近信息制约图像,并进一步在邻近信息制约图像的灰度级统计的基础上进行聚类。该算法考察了临近像素灰度和位置等信息,并且它们之间取得了很好的平衡;不仅表现出较强的鲁棒性且很好地保留了原图像边缘等细节信息,提高了聚类精度,同时大大缩短了大幅图像的聚类时间。通过在合成图像、医学图像及自然图像上的大量实验,与传统算法对比该算法聚类性能明显提高,在图像分割上体现出了较好的分割效果。  相似文献   

4.
模糊 C 均值(FCM)聚类算法采取随机选取聚类中心的方法,这种方法使得 FCM 算法在局部范围内容易获得最优解,但在全局范围内效果较差,且 FCM 算法中聚类簇的个数一般需要人为设定.面对上述种种问题,文中将蚁群聚类算法和 FCM 聚类算法进行结合,获得了一种改进的 FCM 聚类算法.该算法在初步聚类中利用蚁群聚类产生聚类中心和簇的个数,将产生的聚类中心提供给 FCM 算法进行再次聚类.利用蚁群聚类的全局搜索和并行运算的优点避免了聚类易陷入局部最优解的缺陷.经过实验验证,该算法较一般 FCM 算法具有更好的性能.  相似文献   

5.
模糊C均值(FCM)聚类算法采取随机选取聚类中心的方法,这种方法使得FCM算法在局部范围内容易获得最优解,但在全局范围内效果较差,且FCM算法中聚类簇的个数一般需要人为设定。面对上述种种问题,文中将蚁群聚类算法和FCM聚类算法进行结合,获得了一种改进的FCM聚类算法。该算法在初步聚类中利用蚁群聚类产生聚类中心和簇的个数,将产生的聚类中心提供给FCM算法进行再次聚类。利用蚁群聚类的全局搜索和并行运算的优点避免了聚类易陷入局部最优解的缺陷。经过实验验证,该算法较一般FCM算法具有更好的性能。  相似文献   

6.
模糊C均值聚类图像分割的改进遗传算法研究   总被引:3,自引:0,他引:3       下载免费PDF全文
基于模糊C均值(FCM)聚类算法,并利用遗传算法全局随机搜索的特点,提出了一种图像分割的改进遗传算法。该算法首先采用一种初值化算法确定合适的遗传算法的初始搜索范围,然后对遗传算法中的编码方式、交叉算子、变异算子等参数进行了一些适当改进,进而给出了该算法的理论推导和算法的具体实现步骤。该算法除了解决模糊C均值聚类算法在医学图像分割中容易陷入局部最优解的问题,而且采用的初值化算法比标准的遗传模糊C均值聚类算法能确定更合适的遗传算法的初始搜索范围,从而加速了遗传算法的收敛过程。实验表明,该方法相对于标准的遗传模糊C均值聚类算法,效果要好得多。  相似文献   

7.
广义可能性C均值聚类算法   总被引:1,自引:0,他引:1       下载免费PDF全文
可能性C均值聚类算法(PCM)中模糊加权指标m要求大于1,通过对PCM算法的分析讨论,将PCM算法中模糊加权指标m设置为多个独立变量,且将其取值范围进行了扩展,称之为广义可能性C均值聚类(GPCM)。GPCM从理论上分析了加权指标m的扩展取值范围,并利用粒子群算法(PSO)对样本模糊隶属度进行估计。GPCM算法突破了PCM算法对参数m的约束。仿真实验验证了所提算法的有效性。  相似文献   

8.
本文以灰度值的图像分割为基础,对模糊C均值聚类算法(Fuzzy C-means,FCM)[1]和硬聚类进行了详尽的讨论,在此基础上对两者进行了比较,包括两者的迭代速度比较和两者的分割效果比较,聚类中心的初始化对迭代速度和分割效果的影响,并以此为基础对FCM聚类算法进行了改进。实验表明,改进的FCM聚类算法在迭代速度和分割效果方面都明显优于原始的FCM聚类算法。  相似文献   

9.
改进的模糊C均值聚类算法   总被引:4,自引:0,他引:4       下载免费PDF全文
把自适应的策略与传统的模糊C均值聚类算法结合起来,形成新的模糊聚类算法。在不影响收敛速度的情况下,它能够很好解决局部最优以及对初始值敏感的问题。以UCI机器学习数据库中的两组数据集为研究对象,实验结果表明,它的精确度与自适应免疫聚类算法相当,能够得到准确的簇的数目,并且它的收敛速度更快,这对于如今网络数据的高速变化来说,该方法显得更为重要。  相似文献   

10.
半监督的改进K-均值聚类算法   总被引:4,自引:1,他引:3       下载免费PDF全文
K-均值聚类算法必须事先获取聚类数目,并且随机地选取聚类初始中心会造成聚类结果不稳定,容易在获得一个局部最优值时终止。提出了一种基于半监督学习理论的改进K-均值聚类算法,利用少量标签数据建立图的最小生成树并迭代分裂获取K-均值聚类算法所需要的聚类数和初始聚类中心。在IRIS数据集上的实验表明,尽管随机样本构造的生成树不同,聚类中心也不同,但聚类是一致且稳定的,迭代的次数较少,验证了该文算法的有效性。  相似文献   

11.
经典的模糊C均值算法基于欧氏距离,存在等划分趋势的缺陷,分错率较高,只适用于球形结构的聚类。针对这一问题,利用数据的点密度信息,在数据点与聚类中心的距离度量中引入了调节因子,提出了一种基于密度的距离修正矩阵,并用其代替经典模糊C均值算法中的距离度量矩阵。通过人造数据集和UCI数据集的两组聚类实验,证实了改进算法对非球形结构的数据同样适用,且相比经典的模糊C均值算法具有更高的聚类准确率。  相似文献   

12.
随着网络技术的发展和网络规模的扩大,针对计算机网络攻击的方式也日趋多样,那么入侵检测就成为了网络安全研究的热点。为此分析研究了模糊C均值聚类算法在入侵检测中的应用,在此基础上从初始聚类中心、初始化隶属度矩阵、加权指数m和与其他方法相结合四个方面对其在入侵检测中的应用做了进一步的研究,并且讨论了这些算法存在的问题,同时指出了模糊C均值聚类在入侵检测中的研究方向。  相似文献   

13.
随着网络技术的发展和网络规模的扩大,针对计算机网络攻击的方式也日趋多样,那么入侵检测就成为了网络安全研究的热点。为此分析研究了模糊C均值聚类算法在入侵检测中的应用,在此基础上从初始聚类中心、初始化隶属度矩阵、加权指数m和与其他方法相结合四个方面对其在入侵检测中的应用做了进一步的研究,并且讨论了这些算法存在的问题,同时指出了模糊C均值聚类在入侵检测中的研究方向。  相似文献   

14.
基于模糊C均值聚类的支持向量机   总被引:2,自引:0,他引:2  
基于统计学理论的支持向量机是一种新的很有效的模式识别方法,但对于支持向量的选择还有困难,对此本文利用模糊C均值(FCM,Fuzzy C-Means)聚类,对训练样本进行预处理,大大减少了训练样本的数量,提高了支持向量机的训练速度。仿真实验的结果证实了该方法的可行性和有效性。  相似文献   

15.
针对传统图像分割算法对不同类型噪声敏感性缺陷的问题,基于临近像素空间距离的模糊C均值聚类算法即SFCM (fuzzy C means clustering algorithm based on the space distance of the nearest pixels)算法,采用核化的空间距离公式,将点到点之间的距离转化为点到空间的距离,很好的平衡了考察像素点临近像素点的灰度信息与位置信息间的关系,进一步克服了临近像素的位置差异对考察像素影响不同的缺点.通过在合成图像和自然图像上的大量实验并与几个传统算法进行对比,不仅表现出了很强的抗干扰能力,提高了聚类精度,并且很好的保留了原图像边缘等细节信息,体现出了较强的鲁棒性.  相似文献   

16.
基于空间信息的可能性模糊C均值聚类遥感图像分割   总被引:1,自引:0,他引:1  
张一行  王霞  方世明  李晓冬  凌峰 《计算机应用》2011,31(11):3004-3007
可能性模糊C均值(PFCM)聚类算法作为模糊C均值(FCM)聚类算法的一种改进算法,能在一定程度上克服FCM算法对噪声的敏感性;但由于PFCM没有考虑像元间的空间信息,对含有较大噪声的图像分割效果依然不理想。为此,提出一种新的基于空间信息的PFCM算法(SPFCM),克服了PFCM算法对含有较大噪声的图像分割效果不佳的缺点。通过对人工图像和IKONOS遥感图像进行分析,结果表明,SPFCM算法无论是在视觉上还是在分割正确率上都优于传统的FCM算法、PFCM算法及两种加入空间信息的FCM算法;对于含有高斯噪声和盐椒噪声的图像,平均分割正确率高达99.71%,是一种去噪效果较好的图像分割算法。  相似文献   

17.
基于模糊相关度的模糊C均值聚类加权指数研究   总被引:2,自引:0,他引:2  
在极小化模糊C均值(FCM)聚类目标函数的过程中,针对目前模糊加权指数m的确定缺乏理论依据和有效评价方法的问题,提出了一种基于模糊相关度的模糊加权指数计算方法。首先定义模糊相关度的聚类有效性函数,然后通过Gauss迭代计算FCM聚类有效性并将其反馈到模糊加权指数的变化中,从而使m收敛到一个稳定的最优解。理论分析和实验结果表明,该算法是有效的,所得到加权指数m符合预期的结果。  相似文献   

18.
《软件》2017,(2):16-18
模糊C均值(Fuzzy C-means,FCM)聚类算法是聚类算法中的经典算法,此算法引入了隶属度及模糊度的概念,应用范围及应用行业也更为广泛。FCM聚类算法的聚类划分受到数据分布的影响较大,模糊度参数的选择很容易影响聚类算法的聚类结果,且易陷入局部极值的问题。因此研究FCM聚类算法的有效性检验方法则具有非常意义。  相似文献   

19.
半监督聚类利用少部分标签的数据辅助大量未标签的数据进行非监督的学习,从而提高聚类的性能。大部分的谱聚类算法都需事先确定聚类数目,利用半监督机器学习技术和自适应聚类算法,解决算法中存在的聚类数目需要事先确定、易陷入局部最优、收敛速度缓慢、对孤立点敏感等缺陷。实验证明该算法有很好的聚类效果。  相似文献   

20.
核模糊C均值算法的聚类有效性研究   总被引:12,自引:0,他引:12  
针对核模糊C均值聚类(Kemelized Fuzzy C-Means,KFCM)算法的有效性评价,以核非线性映射为工具,将原空间中的六个著名有效性指标推广到高维特征空间,得到其对应的核化形式,并通过数值比较实验考察这些核化指标的性能及其对高斯核宽度β和模糊指数m的敏感特性。结果表明,在所考察的指标中,著名的Xie-Beni指标VXB及其改进指标VK的核化版本具有最好的性能和可靠性,可优先作为KFCM聚类算法的有效性准则。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号