首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
针对YOLOv5在遥感图像目标检测中未能考虑到遥感图像背景复杂、检测目标较小且图像中目标语义信息占比过低导致的检测效果不佳和易出现误检漏检等问题,提出了一种改进YOLOv5的遥感图像目标检测方法。将轻量级的通道注意力机制引入到原始YOLOv5的特征提取和特征融合网络的C3模块中,以提升网络局部特征捕获与融合能力;强化对遥感图像的多尺度特征表达能力,通过增加一个融合浅层语义信息的细粒度检测层来提高对小目标的检测效果;使用Copy-Paste数据增强方法来丰富训练样本数量,在不增加模型计算量的情况下可进一步解决遥感图像背景信息占比过高而目标区域占比过低的问题。实验结果表明,改进YOLOv5在公开的DOTA和DIOR遥感图像数据集上mAP结果分别达到0.757和0.759。该方法较原始YOLOv5可提高0.017和0.059,相比于其他典型遥感目标检测方法在精度上也有所提升,证明了改进YOLOv5方法的有效性。  相似文献   

2.
针对遥感图像中背景复杂度高、目标尺寸多样所导致的目标检测精度低的问题,提出一种基于改进 YOLOv5的遥感图像目标检测算法。该算法将具有Transformer风格的ConvNeXt网络作为主干网络,以克服卷积神经网络(CNN)结构的局限性,捕获更多全局信息。引入 SimAM 注意力机制在不增加网络参数的情况下,推断出特征图的3D注意力权值,提高网络的稳定性以及抗干扰能力。同时采用全局显式集中调节方案的集中特征金字塔(CFP),捕获全局长距离依赖关系以及遥感图像的局部关键区域信息。将本文提出的算法在 RSOD 数据集上进行消融实验,结果表明,本文提出的算法能够显著提高遥感图像目标检测的平均准确率。  相似文献   

3.
针对遥感影像目标检测中复杂背景的干扰,小目标检测效果差等问题,提出一种改进YOLOv5(you only look once v5)的遥感影像目标检测模型。针对卷积神经网络下采样导致的特征图中包含的小目标信息较少或消失的问题,引入特征复用以增加特征图中的小目标特征信息;在特征融合阶段时使用EMFFN(efficient multi-scale feature fusion network)的特征融合网络代替原有的PANet(path aggregation network),通过添加跳跃连接以及跨层连接高效融合不同尺度的特征图信息;为了应对复杂背景带来的检测效果变差的问题,提出了一种包含通道与像素的双向特征注意力机制(bidirectional feature attention mechanism,BFAM),以提高模型在复杂背景下的检测效果。实验结果表明,改进后的YOLOv5模型在DIOR数据集与RSOD数据集中分别取得了87.8%和96.6%的检测精度,相较原算法分别提高5.2和1.6个百分点,有效提高了复杂背景下的小目标检测精度。  相似文献   

4.
针对YOLOv3目标检测算法在遥感图像小目标检测方面精度较低的缺点,提出了一种改进的YOLOv3目标检测算法--YOLOv3-CS。根据对backbone中不同尺度特征重要性的分析重构了backbone,即增加具有丰富位置信息的浅层特征对应的卷积层深度,以此增强backbone对小目标特征的提取能力,引入RFB结构增大浅层特征图的感受野来提升小目标检测精度,优化了anchor boxes及其分配原则。在RSOD数据集的实验结果表明,YOLOv3-CS算法与YOLOv3相比,mAP提高6.49%,F1提高4.85%,所需存储空间降低12.58%,其中backbone的改进和RFB的引入对小目标检测的精度提升较为明显,说明提出的目标检测算法在遥感图像小目标检测方面有较高的优势。  相似文献   

5.
针对当前目标检测任务中对小目标检测识别率低,漏检率高的问题,提出一种基于门控通道注意力机制(EGCA)和自适应上采样模块的改进YOLOv3算法。该算法采用DarkNet-53作为主干网络进行图片基础特征提取;引入自适应上采样模块对低分辨率卷积特征图进行扩张,有效增强了不同尺度卷积特征图的融合效果;在三个尺度通道输出预测结果之前分别加入EGCA注意力机制以提高网络对小目标的特征表达和检测能力。将改进的算法在公开数据集RSOD(remote sensing object detection)上进行实验,小目标检测精度提升了8.2个百分点,最为显著,平均精度AP值达到56.3%,较原算法提升了7.9个百分点。实验结果表明,改进的算法相比于传统YOLOv3算法和其他算法拥有更好的小目标检测能力。  相似文献   

6.
针对X光图像违禁品检测中的复杂背景、正负类别不平衡和漏检等问题,提出一种基于YOLOv5的X光违禁品检测算法。该算法通过在YOLOv5s骨干网络中引入Swin Transformer模块,利用局部自注意力与Shifted Window机制提升模型对X光图像全局特征的提取能力,并且在主干网络后增加空间注意力机制与通道注意力机制,以提升算法对违禁品关键特征的提取能力。引入一种自适应空间特征融合结构,缓解特征金字塔中不同层级特征图之间冲突对模型梯度的干扰。引入Focal Loss函数用于改进YOLOv5s的背景预测损失函数和分类损失函数,提升算法在正负样本与难易样本失衡情况下的检测能力。该算法在公开数据集SIXray100上的平均检测精度达到57.4%,相比YOLOv5s提高了4.5个百分点;在SIXray正样本数据集上的平均检测精度达到90.4%,相比YOLOv5s提高了2.4个百分点。实验结果表明,改进后的算法相比原始YOLOv5s算法检测精度有较大提升,证明了算法的有效性。  相似文献   

7.
在自动驾驶领域, 由于道路背景复杂以及小目标信息缺失, 现有目标检测算法存在检测精度低的问题. 由于车载摄像头视角较为固定, 道路上的目标在图像空间中的分布具有一定的规律, 可以为自动驾驶汽车进行目标检测提供更为丰富的信息. 因此, 提出一种改进YOLOv5s的空间特征增强网络(SE-YOLOv5s). 在YOLOv5s的颈部网络中添加位置注意力模块(location attention module, LAM), 该模块能够根据道路目标在图像中的分布特征进行加权, 增强网络对目标类别位置分布的感知和定位能力. 设计一种小目标增强模块(small target enhancement module, STEM), 将浅层特征和深层特征进行融合, 可以获得更丰富的小目标语义信息和空间细节信息, 提高小目标检测效果. 实验结果表明, 改进模型对不同尺度目标检测精度均有所提高, APS提高2.8%, APM提高2.5%, APL提高2%.  相似文献   

8.
针对遥感图像中感兴趣目标特征不明显、背景信息复杂、小目标居多导致的目标检测精度较低的问题,本文提出了一种改进YOLOv5s的遥感图像目标检测算法(Swin-YOLOv5s)。首先,在骨干特征提取网络的卷积块中加入轻量级通道注意力结构,抑制无关信息的干扰;其次,在多尺度特征融合的基础上进行跨尺度连接和上下文信息加权操作来加强待检测目标的特征提取,将融合后的特征图组成新的特征金字塔;最后,在特征融合的过程中引入Swin Transformer网络结构和坐标注意力机制,进一步增强小目标的语义信息和全局感知能力。将本文提出的算法在DOTA数据集和RSOD数据集上进行消融实验,结果表明,本文提出的算法能够明显提高遥感图像目标检测的平均准确率。  相似文献   

9.
目标检测是计算机视觉领域的一个重要应用,针对光学遥感影像的目标检测任务也是当下的研究热点之一。现阶段科技进步的同时带来了一系列环境问题,环境保护已经成为当下值得关注的重点问题。水坝的建设是影响全球环境保护以及资源利用的一个重要因素,对水坝进行监测可以为环境保护工作提供参考依据。为了环境保护后续工作的开展,分析水坝在图像中的位置,该文针对高分辨率光学遥感影像中的水坝目标检测方法进行研究,对比了深度学习三个阶段较为典型的目标检测模型,根据实验结果选用精度较高的YOLOv5通用目标检测模型,并根据遥感图像背景复杂的特性结合CBAM注意力机制提高网络对图像中水坝目标的重点关注。在DIOR光学遥感目标检测数据集中提取含有水坝目标的图像并验证模型精度,实验表明YOLOv5-CBAM在并不显著增加模型大小的情况下比YOLOv5运算能力强,并且AP50可以达到86.4%,比仅使用YOLOv5的模型AP50提高了3.2百分点。  相似文献   

10.
卫星遥感图像的智能化处理存在着处理标注时标准不统一、数据分布不均匀的问题,导致有效样本不多、目标检测效果较差的现象。针对这种现象,提出一种基于MoCo无监督对比学习模型的目标检测算法,目标检测的框架采用以ResNet50为骨干网络的YOLOv5,使用对比学习得到的ResNet50的权重作为固定值不进行梯度迭代参与YOLOv5下游的检测任务训练。对比学习实验在AID数据集上进行,改进的MoCo v2的top-1精度最高达到95.888%。在下游的检测任务中,使用的是TGRS-HRRSD数据集,改进MoCo v2的预训练权重的mAP@.5:.95精度达到67.8%,较不使用预训练权重提高了5.6个百分点。结果证明改进的MoCo对比学习模型的有效性,在对比学习之后的下游检测任务中,检测精度也有所提高。  相似文献   

11.
为解决遥感图像飞机目标检测时易出现检测精度低与漏检误检等问题,提出了一种基于YOLOv8算法的遥感图像飞机目标检测改进算法。首先,将坐标注意力机制模块嵌入卷积模块中,使其能提取复杂背景下的飞机小目标;然后,优化了检测头,去除了大的目标检测头,在提升小目标检测能力的同时减少算法的计算量;最后,使用WIoU作为改进的损失函数,以提高检测精度。实验表明,改进的YOLOv8算法能够有效提高飞机检测精度,可适用于遥感图像的飞机目标检测。  相似文献   

12.
YOLOv5是目前单阶段目标检测性能较好的算法,但对目标边界回归的精确度不高,难以适用对预测框交并比要求较高的场景。基于YOLOv5算法,提出一种对硬件要求低、模型收敛速度快、目标框准确率高的新模型YOLO-G。改进特征金字塔结构(FPN),采用跨层级联的方式融合更多的特征,一定程度上防止了浅层语义信息的丢失,同时加深金字塔深度,对应增加检测层,使各种锚框的铺设间隔更加合理;其次把并行模式的注意力机制融入到网络结构中,赋予空间注意力模块和通道注意力模块相同的优先级,以加权融合的方式提取注意力信息,使网络可根据对空间和通道注意力的关注程度得到混合域注意力;通过降低网络的参数量和计算量对网络进行轻量化处理,防止因模型复杂度提升造成实时性能的损失。使用PASCAL VOC的2007、2012两个数据集来验证算法的有效性,YOLO-G比YOLOv5s的参数量减少了4.7%,计算量减少了47.9%,而mAP@0.5提高了3.1个百分点,mAP@0.5:0.95提高了5.6个百分点。  相似文献   

13.
近年来针对合成孔径雷达(synthetic aperture radar,SAR)图像中缺乏颜色和纹理细节的舰船检测技术在深度学习领域中得到了广泛研究,利用深度学习技术可以有效避免传统的复杂特征设计,并且检测精度得到极大改善.针对舰船目标检测框具有高长宽比和密集排列问题,提出一种基于改进YOLOv5的目标检测方法.该方...  相似文献   

14.
为解决复杂环境下道路目标检测任务中由于目标尺度变化多样、密集遮挡以及光照不均匀等导致的漏检问题,提出了一种基于YOLOv5的道路目标检测改进方法 CTC-YOLO(contextual transformer and convolutional block attention module based on YOLOv5)。针对小目标,改进网络检测头结构,增加多尺度目标检测层,提高小目标检测精度。为了充分利用输入的上下文信息,在特征提取部分引入上下文变换模块(contextual transformer networks,CoTNet),设计了CoT3模块,引导动态注意力矩阵学习,提高视觉表征能力。在Neck部分的C3模块集成卷积块注意力模型(convolutional block attention module,CBAM),以在各种复杂的场景中找到注意力区域。为进一步验证CTC-YOLO方法,采取了一些有用的策略,如模型集成位置选择和对比其他注意力机制。实验结果表明,在公开数据集KITTI、Cityscapes以及BDD100K上mAP@0.5分别达到89.6%、46.1%和57....  相似文献   

15.
16.
针对在实际交通场景中对车辆目标检测算法有占用资源小、保证实时性和准确率高的要求,提出了一种基于改进YOLOv5s的车辆目标检测算法。首先,引入GhostNet改进YOLOv5s的Backbone,降低了网络的计算量,提高了检测速度;其次,融合CBAM注意力机制,改善在各种天气、光照情况下难以被准确检测的问题;然后,使用Soft-NMS代替NMS,减少了交通拥堵等情况造成的漏检问题;最后,对改进后的算法进行了对比消融实验,验证其性能,再部署到嵌入式设备端测试。根据实验结果,改进算法在保证较高的平均精度的情况下,模型资源占用降低了34.76%,在嵌入式平台上的帧率可以达到29 frame/s,可以达到实际应用的要求。  相似文献   

17.
针对目标检测算法应用在鱼眼图像数据集上检测精准率低、算法实时性差等问题,提出了在化工场景下利用改进网络YOLOv5进行鱼眼图像中的目标检测算法。由于无公开化工场景鱼眼图像数据集,提出了利用不同类型图像间像素点的坐标关系,将数据集转换为同鱼眼图像具有相同畸变效果的图像。为消除鱼眼图像中有效区域外的冗余信息,将线扫描算法应用到YOLOv5s数据预处理阶段。为在缩减模型的同时保证算法的检测精准率,提出了采用注意力机制scSE和空洞卷积来改进轻量级网络ShuffleNetV2,并利用改进后的轻量级网络代替原YOLOv5s中主特征提取网络。实验结果表明,在实验设置相同的条件下,改进后的算法在模型从27.4 MB缩减到14.2 MB的情况下,检测精准率从97.86%提高到98.46%。  相似文献   

18.
李维娜  李爽 《软件》2023,(3):179-183
现有的YOLOv5模型无法精确检测出进入复杂施工现场内的人员佩戴安全帽问题,本文提出了一种基于YOLOv5的安全帽检测算法。模型的具体改进方法为:在主干网络中新增了一个小目标层P2和3-D注意力机制SimAM,提升算法的特征提取能力便于能够更容易检测出小目标;将边框损失函数CIoU_Loss改为SIo U_Loss,以提升对小目标检测的训练速度与精度,从而得到一种新的安全帽佩戴检测模型。实验结果显示,修改后的YOLOv5s算法大大提高了复杂工程现场安全帽检测的准确率,较原有的算法提高了1.4个百分点,mAP值达到了95.5%。  相似文献   

19.
本文针对图像中小目标难以检测的问题,提出了一种基于YOLOv5的改进模型.在主干网络中,加入CBAM注意力模块增强网络特征提取能力;在颈部网络部分,使用BiFPN结构替换PANet结构,强化底层特征利用;在检测头部分,增加高分辨率检测头,改善对于微小目标的检测能力.本文算法在人脸瑕疵数据集和无人机数据集VisDrone2019两份数据集上均进行了多次对比实验,结果表明本文算法可以有效地检测小目标.  相似文献   

20.
针对复杂环境中,烟雾火焰检测存在精度低,小目标检测困难等问题,提出一种改进的基于YOLOv5s的小目标烟雾火焰检测算法。基于公开数据集自建了9 981张不相似的烟雾火焰图像数据集,解决现有数据集的限制,提高了模型的训练效率与泛化能力;在网络中添加3-D注意力机制SimAM,增加算法的特征提取能力,而且没有增加额外的参数;修改网络中的Neck结构,将三尺度检测改为四尺度检测,并结合了加权双向特征金字塔网络(BiFPN)结构,对特征融合过程进行修改,提高小目标的检测能力与特征融合能力;通过遗传算法来优化网络中的部分超参数,进一步模型的检测能力。实验结果表明,改进后的算法比原始YOLOv5s算法平均检测精度提高了7.2%,同时对小目标检测精度更高,误检漏检等情况减少。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号