首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为研究装配整体式钢-混凝土组合梁中栓钉抗剪连接件的受力性能,设计了10个栓钉抗剪连接件,对其进行推出试验,得到了现浇混凝土板和预制混凝土板中栓钉抗剪连接件在单调和重复荷载作用下的界面剪力-滑移曲线以及破坏形态。结果表明:预制混凝土板中栓钉受剪承载力比现浇混凝土中栓钉受剪承载力略低,均为栓杆剪断和栓钉根部焊缝破坏;重复荷载作用下峰值界面剪力对应的界面滑移明显大于单调荷载作用下峰值界面剪力对应的界面滑移;重复荷载作用下的峰值界面剪力与单调荷载下的峰值界面剪力相当,其界面剪力-滑移曲线基本一致。  相似文献   

2.
为研究装配整体式钢-混凝土组合梁中栓钉抗剪连接件的受力性能,设计了10个栓钉抗剪连接件,对其进行推出试验,得到了现浇混凝土板和预制混凝土板中栓钉抗剪连接件在单调和重复荷载作用下的界面剪力-滑移曲线以及破坏形态。结果表明:预制混凝土板中栓钉受剪承载力比现浇混凝土中栓钉受剪承载力略低,均为栓杆剪断和栓钉根部焊缝破坏;重复荷载作用下峰值界面剪力对应的界面滑移明显大于单调荷载作用下峰值界面剪力对应的界面滑移;重复荷载作用下的峰值界面剪力与单调荷载下的峰值界面剪力相当,其界面剪力-滑移曲线基本一致。  相似文献   

3.
为了加强大跨度钢-混凝土组合梁的界面黏结效果,结合实际工程的构造提出十字型开孔钢板剪力键。通过1组栓钉剪力键和3组十字型开孔钢板剪力键的推出试验,研究了其破坏模态及荷载-滑移曲线。结果表明:相近截面面积的十字型开孔钢板剪力键抗剪性能远高于栓钉剪力键,截面宽度和混凝土强度等级对十字型开孔钢板剪力键抗剪性能的影响最大;同时十字型开孔钢板剪力键的抗剪承载力随着开孔钢板厚度的增加而提高;抗剪刚度随着剪力键高度的增加有一定的提高。  相似文献   

4.
钢-混凝土组合结构构件具有承载力高、塑性韧性好、防腐、耐火及防火性能好等诸多优点得到广泛应用。文章对钢-混凝土组合结构采用栓钉剪力连接件和开孔钢板PBL剪力连接件展开试验研究,对混凝土滑移量和应变进行监测分析。试验结果表明:采用栓钉剪力连接件的钢-混凝土组合结构极限承载力明显低于开孔钢板PBL剪力连接件下的钢-混凝土组合结构,前者破坏形态呈脆性破坏,后者延性效果优于前者,且界面受力行为体现在混凝土板裂缝形态上,充分发挥了界面粘结应力强度以及混凝土的抗压性能。  相似文献   

5.
为研究栓钉连接件对预制UHPC-现浇普通混凝土组合试件界面抗剪性能的影响,文中对光滑界面和不同栓钉连接件长度界面的组合试件进行双面剪切试验,记录加载过程中的剪切荷载与界面滑移,通过剪切荷载-滑移曲线分析栓钉连接件长度对组合试件抗剪性能的影响。研究结果表明,栓钉连接件显著提高预制UHPC-现浇普通混凝土组合试件界面抗剪强度。其中20mm栓钉露出长度界面的组合试件界面抗剪强度与抗剪刚度均最大,抗剪强度达到光滑界面的4.16倍。栓钉连接件组合试件表现为延性破坏。随着界面栓钉露出长度的增加,组合试件的界面抗剪强度与刚度均先上升再下降。为使用UHPC免拆模板进行界面处理提供参考。  相似文献   

6.
钢板外包混凝土组合剪力墙由钢板双面或单面外包钢筋混凝土板及栓钉构成,是一种新型的抗侧力构件。混凝土板主要为钢板提供侧向约束,使钢板剪切屈服先于屈曲,栓钉除了起组合作用还要传递钢板与混凝土板间的剪力。采用有限元分析了28个钢板单面外包混凝土组合剪力墙算例栓钉的剪力需求。考察了墙板在单调侧向荷载作用下栓钉剪力的发展变化,栓钉直径、钢板厚度、混凝土板厚度和栓钉数量对最大栓钉剪力的影响。基于有限元计算结果的拟合,分析了组合剪力墙中钢板与混凝土板抗侧承载力贡献,栓钉群剪力的分布,提出了钢板单面外包混凝土板组合剪力墙设计中栓钉剪力需求计算公式。  相似文献   

7.
抗拔不抗剪栓钉连接件抗拔性能试验研究   总被引:1,自引:0,他引:1  
钢-混凝土组合梁是组合结构中最常见的构件形式,而栓钉连接件是混凝土与钢梁发挥组合作用的关键,也是组合梁研究的重点。随着组合梁的广泛应用,改善其负弯矩下受力状态成为推动组合梁进一步发展的关键。针对可用于改善组合梁负弯矩区受力性能的抗拔不抗剪栓钉,本文进行了7组不同参数的抗拔不抗剪栓钉试件的拉拔试验,获得了混凝土锥体冲切破坏和栓钉径缩拉断两种破坏形态。根据试验结果,对抗拔不抗剪栓钉抗拔性能与栓钉尺寸的关系进行分析,提出了抗拔承载力的设计公式及构造要求。研究表明,抗拔不抗剪栓钉具有良好的抗拔性能,栓钉尺寸是影响其抗拔性能的主要因素。  相似文献   

8.
针对栓肋混合拉接的新型双钢板混凝土组合剪力墙的抗震性能进行了有限元分析。该剪力墙面层钢板间通过肋板及栓钉连接,中间填充混凝土。基于ABAQUS有限元分析软件建立了该剪力墙的精细化有限元模型。详细研究了钢板厚度与是否布置抗剪栓钉对该剪力墙在水平低周往复荷载作用下的滞回性能的影响。结果表明:新型双钢板混凝土组合剪力墙滞回曲线饱满,没有捏缩现象发生,整体构件抗震性能良好,具有较好的延性。钢板厚度的增加使截面含钢量提高,承载力和刚度明显提升,耗能能力增强;布置抗剪栓钉提高了试件加载后期的强度,延缓了试件在破坏阶段承载力下降过程的出现,提高了延性。  相似文献   

9.
钢板混凝土剪力墙广泛用于超高层混合结构,钢板与混凝土之间的组合作用,使其有着高的承载力、良好的刚度和延性,钢板与混凝土之间抗剪连接件设计是实现这种组合作用的关键保障,目前设计标准中尚未有针对这种平面构件连接件的定量计算方法。在总结相关标准及文献的基础上,根据钢板混凝土剪力墙的受力特点,提出了钢板与混凝土的正截面和斜截面的界面剪力的计算方法,进而得到总界面剪力,据此来计算连接件(栓钉)的需求量,在界面上分区布置;探讨了栓钉布置方式和钢板局部稳定性对栓钉间距的影响,发现梅花形布置能适当增加栓钉间距,给出了不同布置方式并考虑钢板局部稳定时栓钉间距与钢板厚度比的最大值。最后,以一实际混合结构工程为例,探讨了上述方法的适用性,可供设计参考。  相似文献   

10.
以钢-混凝土组合梁中普遍采用的栓钉剪力连接件为研究对象,针对普通单钉头栓钉连接件存在根部相对薄弱、抗剪能力较差、连接容易过早失效的缺点,提出了一种新型双钉头型栓钉剪力连接件形式,并进行了推出试验有限元模拟分析,在此基础上讨论了影响新型栓钉连接件抗剪承载力的主要因素,最后结合有关规范公式提出了设计建议。研究表明:新型双钉头型栓钉提高了连接件的抗剪极限承载力(与传统栓钉相比,承载力可提高约10%),减小了钢梁与混凝土板的相对滑移,提高了二者的共同工作能力。下钉头直径是影响新型栓钉连接件抗剪性能的主要因素,工程应用时可取栓钉下钉头直径为其杆身直径的1.2~1.3倍,此时连接件极限承载力较高,抗剪工作性能亦较好。当按照我国现行钢结构规范设计采用新型栓钉连接件的钢-混凝土组合梁时,可对单个栓钉连接件的抗剪承载力计算值乘以1.3增大系数。与采用传统栓钉的组合梁相比,采用新型栓钉的钢-混凝土组合梁初期刚度与前者基本相同,但后期会有约12%~20%的明显提高。由于新型栓钉的滑移较小,使混凝土板和钢梁共同工作效果提高。  相似文献   

11.
为探究桥梁工程中装配式组合梁内集束钉群的荷载-变形特征,以钉群内栓钉数量为参数,开展了10个装配式群钉剪力键试件和3个现浇群钉试件的推出加载试验,对比破坏形态、承载力、滑移和剪切刚度,研究装配式与现浇式群钉剪力键的区别以及钉群内栓钉数量对力学行为,特别是界面滑移剪切刚度的影响。结果表明:相同参数下,装配式群钉剪力键试件的抗剪承载力和滑移刚度均略低于现浇试件;装配式和现浇群钉剪力键的荷载-滑移曲线均可分为弹性、弹塑性和塑性3个阶段;相同荷载条件下,装配式群钉剪力键的滑移剪切刚度小于现浇试件;随着钉群内栓钉数量增加,装配式群钉剪力键整体剪切刚度增加而平均单个栓钉的剪切刚度则明显降低。基于理论分析及试验数据,提出了装配式群钉剪力键的剪切刚度计算表达式。  相似文献   

12.
钢-活性粉末混凝土(RPC)组合梁是一种新型组合结构,界面栓钉连接件的抗剪承载力是组合梁结合部强度最重要的指标。采用推出试验,研究了混凝土强度、栓钉直径、栓钉长度对栓钉连接件抗剪承载力的影响规律。结果表明,对于相同的栓钉尺寸,钢-RPC(C150)栓钉抗剪承载力明显高于钢-普通混凝土(C50),二者比值约为1.3。前者发生栓钉的剪切破坏,后者发生的是混凝土的压碎破坏形式。钢-RPC栓钉抗剪承载力与栓钉直径平方成正比,但与栓钉长度变化关系不大。基于试验结果,本文提出了考虑混凝土强度影响的钢-RPC栓钉抗剪承载力的计算公式,为钢-RPC组合梁设计提供依据。  相似文献   

13.
群钉由于受力不均匀性而造成其极限承载力下降,因此改善群钉的受力不均匀性十分有必要。本文选取环保的橡胶材料对剪力钉根部进行外包,形成橡胶–剪力钉组合剪力连接件,并进行了推出试验,对比分析了普通群钉试件和橡胶–剪力钉群试件的破环形态、极限承载力、荷载–滑移规律和剪切刚度等受力性能。结果表明:橡胶–剪力钉群试件破坏时具有更好的延性,呈弯剪破坏,橡胶–剪力钉群试件的极限抗剪承载力均大于普通剪力钉群的极限抗剪承载力;由于橡胶的设置,降低了剪力钉群的抗剪刚度,使得单枚剪力钉的受力趋于均匀。基于本次试验,结合群钉相关研究成果,推导了橡胶–剪力钉群中单个剪力钉的极限承载力公式,为该类橡胶–剪力钉组合剪力连接件中橡胶的设置和应用提供了试验和理论参考。  相似文献   

14.
以含U型肋的钢-薄层超高性能混凝土(UHPC)轻型组合桥面结构为对象,开展了稀疏栓钉布置下的组合桥面三点弯曲疲劳试验,研究了栓钉抗剪和薄层UHPC抗弯拉、疲劳性能,并进行了剩余强度试验.疲劳试验结果表明,累计经历3200万次疲劳加载后,UHPC顶面的最大裂缝宽度仅为0.05 mm,且钢-薄层UHPC界面未见显著滑移.剩...  相似文献   

15.
双钢板-混凝土组合剪力墙结构是一种新型高层建筑抗侧力构件,具有良好的应用价值和发展前景。根据其他学者的试验结果,结合相关文献中连接件的剪切滑移公式,拟合得出抗剪栓钉的剪力-滑移关系,并通过有限元软件ANSYS建立了双钢板-混凝土组合剪力墙的有限元模型。以分析组合剪力墙的剪切性能为目的,采用相关假定简化模型并与已有试验结果对比,验证有限元模型的合理性。采用验证过的有限元模型进一步对双钢板-混凝土组合剪力墙的抗剪性能进行非线性分析,研究抗剪栓钉间距、钢板厚度、混凝土板厚度、混凝土强度等级及组合剪力墙跨高比等主要参数的影响。数值结果表明,钢板、混凝土板厚度以及混凝土强度对双钢板-混凝土组合剪力墙的抗剪承载力的影响最显著,而栓钉间距会影响组合剪力墙的受剪破坏模式。  相似文献   

16.
共进行了8块组合板试验,研究了缩口型压型钢板-混凝土组合板的破坏特征、纵向抗剪、抗弯等力学性能。试验结果表明,对组合板承载力起控制作用的是纵向剪切破坏和弯曲破坏,对于端部无栓钉的组合板,随剪跨比Ls/dp的增大,破坏形态会逐渐由纵向剪切破坏向弯曲破坏过渡;端部栓钉可以有效改善组合板在极限状态时的受力性能。在试验研究的基础上,分别采用m-k法和部分剪力连接法回归得到了计算该类型压型钢板组合板纵向抗剪承载力的必要参数,同时分析了端部栓钉的有利作用。两种方法均能较准确地预测板的极限承载力。  相似文献   

17.
通过13个在单调荷载作用下H型钢腹板焊接栓钉的部分外包混凝土组合构件的推出试验,对其破坏形态、荷载-滑移特性和纵向剪力传递性能进行了研究,分析了栓钉数量、栓钉直径、栓钉布置方式、型钢翼缘宽度、腹部混凝土箍筋布置方式及加载方式等对受剪承载力的影响。试验结果表明:H型钢腹板焊接栓钉的部分外包混凝土组合构件的主要破坏形态为外包混凝土劈裂破坏和栓钉剪断破坏;典型的荷载-滑移曲线可分为3个特征阶段,分别为无滑移阶段、荷载上升段及荷载下降段;腹部栓钉有效地提高了部分外包混凝土组合构件的纵向受剪承载力,且受剪承载力随栓钉直径的增大和栓钉数量的增加而增大;腹部栓钉纵向布置优于横向布置,栓钉纵向偏心布置对受剪承载力影响较小;宽翼缘型钢能更好地约束腹部混凝土,提高其受剪承载力;腹部箍筋不同布置方式对极限荷载的影响较小;通过分析构件的受力机理和纵向剪力传递模式,提出了H型钢腹板焊接栓钉的部分外包混凝土组合构件纵向受剪承载力算式,计算结果与试验结果吻合较好。  相似文献   

18.
为了提高剪力墙内钢板与高强混凝土界面的黏结 滑移性能,进行了10个配置列阵栓钉抗剪键的钢板外包高强混凝土墙板试件的推出试验。试件设计参数包括混凝土强度、栓钉长径比、拉结筋构造等。通过分析荷载-滑移曲线、黏结强度等性能指标,研究了不同参数对钢板与外包高强混凝土间黏结-滑移性能的影响。给出了钢板外包高强混凝土剪力墙中栓钉的受剪承载力计算公式,得到了不同构造下黏结-滑移本构关系。研究表明:混凝土强度对钢板外包高强混凝土剪力墙黏结强度的影响呈正相关;栓钉长径比不小于4且不大于8时,增大长径比对界面受剪承载力的提高影响不大;将拉结筋取代部分栓钉后可大幅度提高钢板外包混凝土剪力墙的残余黏结强度。给出的钢板高强混凝土剪力墙内栓钉受剪承载力拟合计算式所得结果以及黏结 滑移本构关系拟合曲线与试验结果均符合较好,可为工程应用提供参考。  相似文献   

19.
钢-混凝土组合构件中的栓钉抗剪连接件作为主要传力部件,在混凝土中的力学行为极为复杂,栓钉周围的混凝土受栓钉"剪撬"局压集中作用极易产生劈裂微裂缝.为解决栓钉抗剪连接件"剪撬"局压劈裂的问题,提出一类带约束构造的栓钉抗剪连接件,通过推出试验研究了该新型栓钉连接件在钢-混凝土翼缘板之间的界面抗剪受力性能,比较了其与传统栓钉界面抗剪性能的差异.研究表明:带约束构造的栓钉抗剪连接件能依靠自身的约束构造有效地避免"剪撬"局压劈裂的不利影响,较大地提高钢-混凝土翼缘板之间的界面抗剪刚度,为钢-混凝土组合构件强连接系数的设计提供了理论依据.  相似文献   

20.
通过对8块压型钢板-轻骨料混凝土组合楼板进行两点对称集中加载的静力试验,考察了组合楼板的破坏特征、变形性能及受力性能。研究结果表明,对于在压型钢板表面布置抗剪钢筋以及在压型钢板端部设置栓钉的组合楼板,其承载力主要受弯曲破坏控制。在其他条件相同的情况下,抗剪钢筋间距对受弯极限承载力影响不大。根据塑性设计理论,提出了组合楼板截面应力分布计算模型,建立了压型钢板-轻骨料混凝土组合楼板的受弯极限承载力计算公式,并验证了其适用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号