首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The hexagonal boron nitride nanoparticles (h-BNNPs) reinforced flexible polyvinylidene fluoride (PVDF) nanocomposite films were prepared via a simple and versatile solution casting method. The morphological, thermal and electrical properties of h-BNNPs/PVDF nanocomposite films were elucidated. The electromagnetic interference (EMI) shielding properties of prepared nanocomposite films were investigated in the X-band frequency regime (8–12 GHz). The EMI shielding effectiveness (SE) was increased from 1 dB for the PVDF film to 11.21 dB for the h-BNNPs/PVDF nanocomposite film containing 25 wt% h-BNNPs loading. The results suggest that h-BNNPs/PVDF nanocomposite films can be used as lightweight and low-cost EMI shielding materials.  相似文献   

2.
In this work, polymer nanocomposites consisting of a poly(vinyl chloride) (PVC) and polyvinylidene fluoride (PVDF) polymer network with ZnO nanoparticles as a dopant were prepared by solution casting. An XRD study of the PVC/PVDF/ZnO polymer nanocomposites shows predominantly sharp and high intensity peaks. However, the intensity and sharpness of the XRD peaks decreases with further increment in loading of ZnO (wt%), which reveals a proper intercalation of ZnO nanoparticles within the PVC/PVDF polymer system. Fourier transform infrared spectroscopy has been used to verify the chemical compositional change as a function of ZnO nanoparticle loading. TGA analysis clearly describes the thermal degradation of the pure polymer and polymer nanocomposites. The complex dielectric function, AC electrical conductivity and impedance spectra of these nanocomposites were investigated over the frequency range from 10 Hz to 35 MHz. These spectra were studied with respect to the Wagner ? Maxwell ? Sillars phenomenon in the low frequency region. Nyquist plots of the PVC/PVDF/ZnO nanocomposites were established from impedance measurements. The temperature‐dependent DC ionic conductivity obtained from the Nyquist plots follows Arrhenius behaviour. © 2016 Society of Chemical Industry  相似文献   

3.
In this work, the electret properties of poly(vinylidene fluoride) (PVDF)/lithium niobate (LiNbO3, LN) nanocomposites are systematically studied. The LN nanoparticles are fabricated by hydrothermal synthesis followed by melt‐reaction. Their morphology and crystalline structures are characterized by scanning electron microscopy (SEM) and X‐ray diffraction (XRD). The PVDF/LN nanocomposite films are prepared by solution casting with N,N‐dimethylformamide (DMF) as the solvent or melt molding. The crystalline phases of PVDF in both pure samples and nanocomposites are checked by XRD and Fourier transform infrared spectroscopy (FTIR). The measurements of the dielectric and electret properties show that the LN nanoparticles significantly increase the dielectric permittivity (ε) and the thermally stimulated discharge current (TSDC) of the samples. Such materials have potential applications including for air filters and power generators. A demonstration shows that after the same charging process, the PVDF/LN nanocomposites can absorb larger amount of polystyrene (PS) foam microparticles or micrometer size test dusts than the pure PVDF.  相似文献   

4.
The recent surge in graphene research has stimulated interest in the investigation of various two-dimensional (2D) nanomaterials, including 2D boron nitride (BN) nanostructures. Among these, hexagonal boron nitride nanosheets (h-BNNs; also known as white graphene, as their structure is similar to that of graphene) have emerged as potential nanofillers for preparing thermally conductive composites. In this work, hexagonal boron nitride nanoparticles (h-BNNPs) approximately 70 nm in size were incorporated into a polyvinylidene fluoride (PVDF) matrix with different loadings (0–25 wt.%). The PVDF/h-BNNP nanocomposites were prepared by a solution blending technique and characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), polarized optical microscopy (POM) and scanning electron microscopy (SEM). In addition, the thermal conductivity and dielectric properties of the nanocomposites were investigated. The incorporation of h-BNNPs in the PVDF matrix resulted in enhanced thermal conductivity. The highest value, obtained at 25 wt.% h-BNNP loading, was 2.33 W/mK, which was five times that of the neat PVDF (0.41 W/mK). The thermal enhancement factor (TEF) at 5 wt.% h-BNNP loading was 78%, increasing to 468% at 25 wt.% h-BNNP loading. The maximum dielectric constant of approximately 36.37 (50Hz, 150 °C) was obtained at 25 wt.% h-BNNP loading, which was three times that of neat PVDF (11.94) at the same frequency and temperature. The aforementioned results suggest that these multifunctional and high-performance nanocomposites hold great promise for application in electronic encapsulation.  相似文献   

5.
We report a facile technique to fabricate flexible and self-standing NiO/PVDF nanocomposite films. Detail structural and thermal characterizations of nanocomposite films show the gradual increase of electroactive β-phase of PVDF with increasing NiO nanoparticles content. The enhancement of β phase in the NiO/PVDF nanocomposites has been explained from physicochemical point of view. Electrical properties of the nanocomposites indicate fair improvement in dielectric properties at low filler loading with less dielectric loss. The value of dielectric constant of 0.75 wt% NiO/PVDF films at 100 Hz is five times higher than that of neat PVDF. Series-parallel model was used to describe the filler concentration dependence of the dielectric constant of the nanocomposites. These nanocomposites also exhibit excellent ferroelectric properties. Nanocomposite films having thickness 300 μm were also successfully employed for microwave shielding application. This work suggests that these films would be very useful for thinner, lighter energy harvesting storage and EMI shielding applications.  相似文献   

6.
Poly(vinylidene fluoride)/lead zirconate titanate nanocomposite thin films (PVDF/PZT-NPs) were successfully prepared by mixing fine Pb(Zr0.52,Ti0.48)O3 nanoparticles (PZT-NPs) into a PVDF solution under ultrasonication. The mixture was spin coated onto glass substrate and then cured at 110 °C. X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) were used to characterize the structure and properties of the obtained thin-film nanocomposites. The dielectric properties of the PVDF/PZT-NPs were analyzed in detail with respect to frequency. In comparison with pure poly (vinylidene fluoride), the dielectric constant of the nanocomposite (15 vol.% PZT-NPs) was significantly increased, whereas the loss tangent was unchanged in the frequency range of 100 Hz to 30 MHz. The nanocomposites exhibited good dielectric stability over a wide frequency range. Different theoretical approaches were employed to predict the effective dielectric constants of the thin film nanocomposite systems, and the estimated results were compared with the experimental data.  相似文献   

7.
In this article Polypropylene/Polypyrrole (PP/PPy) and Polypropylene/polypyrrole-graphene oxide (PP/PPy-GO) nanocomposites were prepared by melt mixing. PPy nanoparticles and PPy-GO nanocomposite were prepared by chemical polymerization and served as nanofillers. FTIR, XRD and SEM analysis were used for the characterization of PPy and PPy-GO composites. The effects of PPy and PPy-GO loading level on the morphology, tensile and electrical properties of PP-based nanocomposites were examined. It was found that the Young's modulus and tensile strength increased with the increase of nanofiller content. Tensile results also showed that PPy-GO composite significantly affected the mechanical properties of PP based nanocomposites compared to the PPy nanoparticles. It was observed that the addition of 1% wt. PPy-GO into PP, increased the Young's modulus about 30% compared as with pure PP. Electrical conductivity measurements showed that conductivity of PP nanocomposites increased up to 1 × 10?3 S/cm for PP/PPy-GO nanocomposites. It was also observed that PP-g-MA improved the distribution of PPy and PPy-GO nanocomposites and affected the morphology, electrical and mechanical properties of PP-based nanocomposites.  相似文献   

8.
Nanocomposites based on poly (n-butyl methacrylate) (PBMA) with various concentrations of titanium dioxide (TiO2) nanoparticles were synthesised by in situ free radical polymerisation method. The formation of nanocomposite was characterised by FTIR, UV, XRD, DSC, TGA, impedance analyser and flame retardancy measurements. FTIR and UV spectrum ascertained the intermolecular interaction between nanoparticles and the polymer chain. The XRD studies indicated that the amorphous region of PBMA decreased with the increase in content of metal oxide nanoparticles. The SEM revealed the uniform dispersion of nanoparticles in the polymer composite. The DSC and TGA studies showed that the glass transition temperature and thermal stability of the nanocomposites were increased with the increase in the concentration of nanoparticles. The conductivity and dielectric properties of nanocomposites were higher than pure PBMA and the maximum electrical property was observed for the sample with 7 wt% TiO2. As the concentration of nanoparticles increased above 7 wt%, the electrical property of nanocomposite was decreased owing to the agglomeration of nanoparticles in the polymer. Nanoparticles could impart better flame retardancy to PBMA/TiO2 composite and the flame resistance of the materials improved with the addition of nanoparticles in the polymer matrix.  相似文献   

9.
The well distributed and electroactive polyvinylidene fluoride (PVDF)/magnetite nanocomposites were successfully fabricated using a mixed solvent system (THF/DMF). Dynamic mechanical properties of the fabricated PVDF/magnetite nanocomposites indicate significant enhancements in the storage modulus as compared with that of neat PVDF. By adding 2 wt % magnetite nanoparticles into the PVDF matrix, the thermal stability of nanocomposites could be enhanced about 26°C as compared with that of PVDF. The β‐phase fraction of PVDF is significantly enhanced with increasing the voltage of electric field poling. The piezoelectric responses of PVDF/magnetite films are extensively increased about five times in magnitude with applied strength of electrical field at 35 MV/m. The change of piezoelectric responses during the applied electric field may be due to the relative long arrangement of PVDF units along the direction of electric field poling and thus increases the values of Lp* and lc. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40941.  相似文献   

10.
In the present study, a lightweight and flexible polyvinylidene fluoride (PVDF)/zinc oxide (ZnO) nanocomposite was prepared using a low-temperature phase-inversion process. The synergetic effect of low-temperature, phase-inversion, and the integration of ZnO nanoparticles primes on enhancing the electroactive polar β-phase in the nanocomposite. The transformation of the electroactive phase and its quantification were carried out using Fourier-transform infrared spectroscopy and wide-angle X-ray diffraction. The PVDF/ZnO piezoelectric polymer nanocomposite was utilized for energy harvesting application that showed a better electromechanical response of ca. 69 V (peak to peak) at ~1.6 N, 250 μW/cm2 surface power density and 0.25 mA/cm2 surface current density. The fabricated piezoelectric polymer nanocomposite is a possible candidate for superior energy scavenging applications for capturing human kinematics.  相似文献   

11.
ABSTRACT

Herein, graphene oxide (GO) nanosheets coated with insulated polyvinyl pyrrolidone (PVP) were integrated into poly(vinylidene fluoride) (PVDF) to investigate the effects of the insulating PVP shell, loading, and its reaction time on the dielectric properties of the nanocomposites. Compared with the pristine GO/PVDF, the GO@PVP/PVDF nanocomposites show an improvement of the filler dispersion, and significantly suppressed conductivity and loss. Activation energies of GO/PVDF and GO@PVP/PVDF nanocomposites are calculated as 1.247 eV and 0.435 eV, respectively, indicating that the presence of PVP layer on the GO surface reduces the relaxation activation energy and makes the relaxation occurrence at low temperatures.  相似文献   

12.
Electrically conductive HCl doped polyaniline (Pani) : titanium dioxide (TiO2) nanocomposites thin films were prepared by in‐situ oxidative polymerization of aniline in the presence of different amounts of TiO2 nanoparticles. Later film casting was done using N‐Methyl‐2‐pyrrolidone (NMP) as a solvent. The formation of Pani : TiO2 nanocomposites were characterized by Fourier Transform Infra‐Red spectroscopy (FTIR), x‐ray diffraction (XRD) and thermogravimetric analysis (TGA). The stability of the nanocomposites in terms of direct‐current electrical conductivity retention was studied in air by isothermal and cyclic techniques. The films of Pani : TiO2 nanocomposites were observed thermally more stable under ambient environmental conditions than pure polyaniline film. The stability was seen to be highly dependent on the content of TiO2 nanoparticles in the nanocomposite films. Due to their high stability, such type of nanocomposites can find place as a replacement material for pure polyaniline in electrical and electronic devices. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
To improve interactions between carbon nanotubes (CNTs) and poly(vinylidene fluoride) (PVDF) matrix, multiwalled CNTs (MWCNTs) were successfully coated with amphiphilic polyvinylpyrrolidone (PVP) using an ultrasonication treatment performed in aqueous solution. It was found that PVP chains could be attached noncovalently onto the nanotubes' surface, enabling a stable dispersion of MWCNTs in both water and N,N‐dimethylformamide. PVP‐coated MWCNTs/PVDF nanocomposite films were prepared by a solution casting method. The strong specific dipolar interaction between the PVP's carbonyl group (C?O) and the PVDF's fluorine group C?F2 results in high compatibility between PVP and PVDF, helping PVP‐coated MWCNTs to be homogenously dispersed within PVDF. Fourier transform infrared and X‐ray diffraction characterization revealed that the as‐prepared nanocomposite PVDF films exhibit a purely β‐polymorph even at a very low content of PVP‐wrapped MWCNTs (0.1 wt%) while this phase is totally absent in the corresponding unmodified MWCNTs/PVDF nanocomposites. A possible mechanism of β‐phase formation in PVP‐coated MWCNTs/PVDF nanocomposites has been discussed. Furthermore, the tensile properties of PVDF nanocomposites as function of the content in PVP‐coated MWCNTs were also studied. Results shows that the addition of 2.0 wt% of PVP‐coated MWCNTs lead to a 168% increase in Young's modulus and a 120% in tensile strength. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

14.
Polymorphism in poly(vinylidene fluoride) (PVDF)/clay nanocomposites was studied. Poly(vinylidene fluoride)/clay nanocomposites were prepared with melt intercalation. The samples were characterized with X‐ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopy. The nanocomposite exhibited the β form. Thermal annealing performed at 125 and 185°C showed that the β form of PVDF was stable. The stability of the β form of PVDF was ascertained from these studies. The β form of PVDF in the nanocomposites could be due to crystallization in the constrained phase. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2036–2040, 2003  相似文献   

15.
Nanocomposites consisting of a polyvinylidene fluoride (PVDF)/polyvinyl chloride (PVC) blend containing zinc oxide (ZnO) nanoparticles were prepared. The changes of the structural, optical and thermal properties of the PVDF/PVC blend before and after addition of ZnO were studied. The shift of intensity in IR bands suggested an interaction and compatibility between the blend and ZnO. The structural properties, crystallinity and grain size of the samples were studied using X-ray diffraction. The average grain size was approximately 16 nm confirmed by TEM observations. The X-ray peak positions of ZnO in doped samples were located in the same positions as those of pure ZnO indicating the crystal structure of ZnO was not altered by its incorporation into PVDF/PVC. The estimated values of the optical energy gap from UV/Vis spectra for indirect transition decrease with increasing ZnO due to charge transfer between PVDF/PVC and ZnO nanoparticles. The thermogravimetric analysis curves showed nearly identical behaviors for all samples. Samples that contained ZnO exhibited less weight loss compared to the pure blend attributed to crosslinking formation between the blend and ZnO. Transmission electron microscopy (TEM) images revealed that ZnO was uniformly distributed inside PVDF/PVC polymeric matrices and was superimposed on an amorphous background.  相似文献   

16.
In the present work, Zeolite 13X and carbon black nanoparticles (CBNPs) reinforced polyvinylidene fluoride (PVDF) nanocomposites were obtained by a simple solvent casting technique. The structural, morphological and thermal properties of PVDF/Zeolite 13X/CBNPs nanocomposites with various loadings of Zeolite 13X and CBNPs were investigated using Fourier-transform infrared spectroscopy, X-ray diffraction, Scanning electron microscopy and thermo-gravimetric analysis. The dielectric studies were carried out in the 50 Hz–10 MHz frequency range at room temperature. The electromagnetic interference (EMI) shielding effectiveness (SE) of PVDF/Zeolite 13X/CBNPs nanocomposite was investigated in the 8–18 GHz frequency region (X-band and Ku-band). The maximum EMI SE of approximately −11.1 dB (8–12 GHz) and −11.5 dB (12–18 GHz) was observed for PVDF/CBNPs nanocomposites with 10 wt% loading of CBNPs. These findings emphasize the application of PVDF/Zeolite 13X/CBNPs nanocomposites as a potential EMI shielding material.  相似文献   

17.
Nanocomposites of poly(vinyl cinnamate) (PVCin) with various concentration of nickel oxide (NiO) nanoparticles were prepared by in situ polymerization method. The effect of metal oxide particles on the structural, magnetic and thermal stability was analyzed by a high resolution transmission electron microscope (HRTEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and thermogravimetric analysis (TGA) measurements. The electrical properties such as room temperature DC conductivity and temperature dependent AC conductivity were investigated with respect to different loading of NiO nanoparticles. XRD and HRTEM images showed the uniform arrangement of nanoparticles inside the macromolecular chain of PVCin. The VSM studies of nanocomposites indicated the hysteresis loops of the ferromagnetic behavior. The saturation of magnetization and coercivity values were varied with the content of NiO nanoparticles. From TGA analysis the composite attain better thermal stability than polyvinyl cinnamate and the thermal stability increases with increase in concentration of nanoparticles. The electrical conductivity of nanocomposite was increased with increase in temperature and also with the loading of nanoparticles. The activation energy values calculated from the AC conductivity was found to be decreases with increase in temperature in all compositions. AC and DC conductivity of nanocomposites were much greater than pure PVCin and the maximum conductivity values were obtained for 10 wt% of composite. Different theoretical equations based on Scarisbrick, McCullough and Bueche model were used to compare the experimentally determined conductivity with theoretical conductivities.  相似文献   

18.
Structural, electrical and optical properties of Cu and Ag nanoparticles thin films deposited on glass substrates prepared by sputtering were investigated. Cold cathode ion source used for sputtered of copper and silver targets to deposit nanoparticles thin films on glass substrate using argon gas. X-ray diffraction was used to study the structure and the grain size of thin film which reveals that average grain size is in nano region. Copper nanoparticles was in rang 14 nm and silver nanoparticles size was 20 nm in first peak using Scherrer’s method. The electrical resistivities of copper and silver thin films were also investigated. The thin film resistance Rs of Cu and Ag equals 1.33 and 6.35 Ω respectively. I-V characteristics of thin films were recorded at room temperature and are found to be linear. Optical properties of the synthesized materials are studied by UV–Vis in the wavelength range 200–800 nm. The calculated band gap for the Cu thin film on glass are estimated to be EgCu = 2.18 eV.  相似文献   

19.
Poly(vinylidene fluoride) (PVDF) composite films were prepared by introducing polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) into PVDF matrix. Uniform dispersion and good compatibility of PS-b-PMMA in matrix were observed, which was helpful for high breakdown strength (Eb). The composite film with 9 wt% PS-b-PMMA showed the maximum Eb of 522 kV/mm and the high discharged energy density (Ue) of 10.1 J/cm3, which were 1.7 times and 2.6 times higher than pure PVDF, respectively. Besides, a charged-discharged efficiency (η) of 88% was much higher than pure PVDF at 300 kV/mm, which was beneficial to energy storage.  相似文献   

20.
This study investigates the effect of clay addition on the broadband dielectric properties of multi‐walled carbon nanotube/polyvinylidene fluoride (MWCNT/PVDF) composites, that is, frequency range of 101−106 Hz. Different loadings of MWCNT and clay were used for the preparation of three‐phase (MWCNT/Clay/PVDF) nanocomposites via melt‐mixing method. The crystalline structure and morphology of nanocomposites were examined by employing characterization techniques such as X‐ray diffraction, transmission electron microscopy, and differential scanning calorimetry. The dielectric spectroscopy showed that introducing clay into the MWCNT/PVDF nanocomposites at a critical MWCNT concentration improved dielectric properties tremendously. It was interestingly observed that the incorporation of a specific amount of clay, that is, 1.0 wt%, into the (MWCNT/PVDF) nanocomposite at a critical MWCNT loading, that is, 0.5 wt% MWCNT, resulted in a huge increase in the dielectric permittivity (670% at 100 Hz) and a considerable reduction in the dissipation factor (68% at 100 Hz). POLYM. COMPOS., 161–167, 2016. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号