首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A study of personal, indoor, and outdoor exposure to PM2.5 and associated elements has been carried out for 37 residents of the Research Triangle Park area in North Carolina. Participants were selected from persons expected to be at elevated risk from exposure to particles, and included 29 persons with hypertension and 8 cardiac patients with implanted defibrillators. Participants were monitored for 7 consecutive days in each of four seasons. One goal of the study was to estimate the contribution of outdoor PM2.5 to indoor concentrations. This depends on the infiltration factor Finf, the fraction of outdoor PM2.5 remaining airborne after penetrating indoors. After confirming with our measurements the findings of previous studies that sulfur has few indoor sources, we estimated an average Finf for each house based on indoor/outdoor sulfur ratios. These estimates ranged from 0.26 to 0.87, with a median value of 0.55. Since these estimates apply only to particles of size similar to that of sulfur particles (0.06-0.5 microm diameter), and since larger particles (0.5-2.5 microm) have lower penetration rates and higher deposition rates, these estimates are likely to be higher than the true infiltration factors for PM2.5 as a whole. In summer when air conditioners were in use, the sulfur-based infiltration factor was at its lowest (averaging 0.50) for most homes, whereas the average Finf for the other three seasons was 0.62-0.63. Using the daily estimated infiltration factor for each house, we calculated the contribution of outdoor PM2.5 to indoor air concentrations. The indoor-generated contributions to indoor PM2.5 had a wider range (0-33 microg/m3) than the outdoor contributions (5-22 microg/m3). However, outdoor contributions exceeded the indoor-generated contributions in 27 of 36 homes. A second goal of the study was to determine the contribution of outdoor particles to personal exposure. This is determined by the "outdoor exposure factor" Fpex, the fraction of outdoor PM2.5 contributing to personal exposure. As with Finf, we estimated Fpex by the personal/outdoor sulfur ratios. The estimates ranged from 0.33 to 0.77 with a median value of 0.53. Outdoor air particles were less important for personal exposures than for indoor concentrations, with the median outdoor contribution to personal exposure just 49%. We regressed the outdoor contributions to personal exposures on measured outdoor PM2.5 at the central site. The regressions had R2 values ranging from 0.19 to 0.88 (median = 0.73). These values provide an indication of the extent of misclassification error in epidemiological estimates of the effect of outdoor particles on health.  相似文献   

2.
Because people spend approximately 85-90% of their time indoors, it is widely recognized that a significant portion of total personal exposures to ambient particles occurs in indoor environments. Although penetration efficiencies and deposition rates regulate indoor exposures to ambient particles, few data exist on the levels or variability of these infiltration parameters, in particular for time- and size-resolved data. To investigate ambient particle infiltration, a comprehensive particle characterization study was conducted in nine nonsmoking homes in the metropolitan Boston area. Continuous indoor and outdoor PM2.5 and size distribution measurements were made in each of the study homes over weeklong periods. Data for nighttime, nonsource periods were used to quantify infiltration factors for PM2.5 as well as for 17 discrete particle size intervals between 0.02 and 10 microns. Infiltration factors for PM2.5 exhibited large intra- and interhome variability, which was attributed to seasonal effects and home dynamics. As expected, minimum infiltration factors were observed for ultrafine and coarse particles. A physical-statistical model was used to estimate size-specific penetration efficiencies and deposition rates for these study homes. Our data show that the penetration efficiency depends on particle size as well as home characteristics. These results provide new insight on the protective role of the building shell in reducing indoor exposures to ambient particles, especially for tighter (e.g., winterized) homes and for particles with diameters greater than 1 micron.  相似文献   

3.
Epidemiological studies routinely use central-site particulate matter (PM) as a surrogate for exposure to PM of ambient (outdoor) origin. Below we quantify exposure errors that arise from variations in particle infiltration to aid evaluation of the use of this surrogate, rather than actual exposure, in PM epidemiology. Measurements from 114 homes in three cities from the Relationship of Indoor, Outdoor and Personal Air (RIOPA) study were used. Indoor PM2.5 of outdoor origin was calculated as follows: (1) assuming a constant infiltration factor, as would be the case if central-site PM were a "perfect surrogate" for exposure to outdoor particles; (2) including variations in measured air exchange rates across homes; (3) also incorporating home-to-home variations in particle composition, and (4) calculating sample-specific infiltration factors. The final estimates of PM2.5 of outdoor origin take into account variations in building construction, ventilation practices, and particle properties that result in home-to-home and day-to-day variations in particle infiltration. As assumptions became more realistic (from the first, most constrained model to the fourth, least constrained model), the mean concentration of PM2.5 of outdoor origin increased. Perhaps more importantly, the bandwidth of the distribution increased. These results quantify several ways in which the use of central site PM results in underestimates of the ambient PM2.5 exposure distribution bandwidth. The result is larger uncertainties in relative risk factors for PM2.5 than would occur if epidemiological studies used more accurate exposure measures. In certain situations this can lead to bias.  相似文献   

4.
Ambient air in 18 residences surrounding an aluminum smelter were sampled to study the relationship between indoor and outdoor polycyclic aromatic hydrocarbons (PAHs). Objectives of the study were to quantify the indoor distribution of PAHs, indoor/outdoor (I/O) concentration ratios, and the relationship among PAH compounds. Correlation coefficients inside residences suggested an indoor source of 2-3 ring PAHs and an external source of 4-6 ring PAHs. The I/O ratios of 4-6 ring PAHs for homes without any substantial indoor sources were below unity, indicating that the presence of these PAHs was attributable to the aluminum smelter. Least squares linear regression of the coupled measurements without indoor sources of 5-6 ring PAHs resulted in average infiltration efficiencies (P(PAH)) of 0.49, 0.20, and 0.47 for benzo[a]pyrene, benzo[k]fluoranthene, and benzo[g,h,i]perylene, respectively. These P(PAH) values suggest that simultaneous measurements of indoor and outdoor concentrations of PAHs > 4 rings predominantly associated with the fine fraction of particulate matter could provide useful estimates of particle infiltration efficiency. Overall, study results indicate that when an industrial facility is the main source of outdoor 4-6 ring PAHs, the contribution of facility emissions may greatly exceed indoor sources in nonsmoking residences.  相似文献   

5.
Recent studies on separated particle-size fractions highlight the health significance of particulate matter smaller than 2.5 microm (PM2.5), but gravimetric methods do not identify specific particle sources. Diesel exhaust particles (DEP) contain elemental carbon (EC), the dominant light-absorbing substance in the atmosphere. Black smoke (BS) is a measure for light absorption of PM and, thus, an alternative way to estimating EC concentrations, which may serve as a proxy for diesel exhaust emissions. We analyzed PM2.5 and BS data collected within the EXPOLIS study (Air Pollution Exposure Distribution within Adult Urban Populations in Europe) in Athens, Basel, Helsinki, and Prague. 186 indoor/outdoor filter pairs were sampled and analyzed. PM2.5 and BS levels were lowest in Helsinki, moderate in Basel, and remarkably higher in Athens and Prague. In each city, Spearman correlation coefficients of indoor versus outdoor were higher for BS (range rspearman: 0.57-0.86) than for PM2.5 (0.05-0.69). In a BS linear regression model (all data), outdoor levels explained clearly more of indoor variation (86%) than in the corresponding PM2.5 model (59%). In conclusion, ambient BS seizes a health-relevant fraction of fine particles to which people are exposed indoors and outdoors and exposure to which can be assessed by monitoring outdoor concentrations. BS measured on PM2.5 filters can be recommended as a valid and cheap additional indicator in studies on combustion-related air pollution and health.  相似文献   

6.
The indoor environment is an important venue for exposure to fine particulate matter (PM2.5) of ambient (outdoor) origin. In this work, paired indoor and outdoor PM2.5 species concentrations from three geographically distinct cities (Houston, TX, Los Angeles County, CA, and Elizabeth, NJ) were analyzed using positive matrix factorization (PMF) and demonstrate that the composition and source contributions of ambient PM2.5 are substantially modified by outdoor-to-indoor transport. Our results suggest that predictions of "indoor PM2.5 of ambient origin" are improved when ambient PM2.5 is treated as a combination of four distinct particle types with differing infiltration behavior (primary combustion, secondary sulfate and organics, secondary nitrate, and mechanically generated PM) rather than as a "single internally mixed entity". Study-wide average infiltration factors (i.e., fraction of ambient PM2.5 found indoors) for Relationship of Indoor, Outdoor, and Personal Air (RIOPA) study homes were 0.51, 0.78, and 0.04 (consistent with P = 0.6, 0.9, and 0.09; k = 0.2, 0.1, and 0.6 h(-1)) for PM2.5 associated with primary combustion, secondary formation (excluding nitrate), and mechanical generation, respectively. Modification of the composition, properties, and source contributions of ambient PM2.5 in indoor environments has important implications for exposure mitigation strategies, development of health hypotheses, and evaluation of exposure error in epidemiological studies that use ambient central-site PM2.5 as a surrogate for PM2.5 exposure.  相似文献   

7.
Daily PM2.5 samples were repeatedly collected (1-8 times) in the homes of elderly nonsmoking individuals with coronary heart disease in Amsterdam, The Netherlands (33 individuals) and Helsinki, Finland (44 individuals). Sources of indoor PM2.5 were evaluated using a two-way multilinear engine model. Because the indoor elemental data lacked a traffic marker, separation of traffic related PM was attempted by combining the indoor data with fixed site outdoor data that also contained NO. Six outdoor sources, including long-range transport (LRT), urban mixture, oil combustion, traffic, sea-salt, and soil were identified, and three indoor sources were resolved: resuspension, potassium-rich and copper-rich sources. The average contribution of the indoor factors was 6% (1.1 microg m(-3)) and 22% (2.4 microg m(-3)) in Amsterdam and Helsinki, respectively. The highest longitudinal correlations between source-specific outdoor and indoor PM2.5 concentrations were found for LRT and urban mixture; the median R was above 0.6 for most sources. The longitudinal correlations were lower in Helsinki than in Amsterdam. Indoor-generated PM2.5 was not related to ambient concentrations. We conclude that using outdoor and indoor data together improved the source apportionment of indoor PM2.5. The results support the use of fixed site outdoor measurements in epidemiological time-series studies on outdoor air pollution.  相似文献   

8.
Adverse human health effects have been observed to correlate with levels of outdoor particulate matter (PM), even though most human exposure to PM of outdoor origin occurs indoors. In this study, we apply a model and empirical data to explore the indoor PM levels of outdoor origin for two major building types: offices and residences. Typical ventilation rates for each building type are obtained from the literature. Published data are combined with theoretical analyses to develop representative particle penetration coefficients, deposition loss rates, and ventilation-system filter efficiencies for a broad particle size range (i.e., 0.001-10 microm). We apply archetypal outdoor number, surface area, and mass PM size distributions for both urban and rural airsheds. We also use data on mass-weighted size distributions for specific chemical constituents of PM: sulfate and elemental carbon. Predictions of the size-resolved indoor proportion of outdoor particles (IPOP) for various conditions and ambient particle distributions are then computed. The IPOP depends strongly on the ambient particle size distribution, building type and operational parameters, and PM metric. We conclude that an accurate determination of exposure to particles of ambient origin requires explicit consideration of how removal processes in buildings vary with particle size.  相似文献   

9.
Indoor and outdoor concentrations of six chlordane components (trans-chlordane, cis-chlordane, trans-nonachlor, cis-nonachlor, oxychlordane, and MC5) were measured at 157 residences, all of which were inhabited by nonsmoking individuals, in three urban areas during June 1999-May 2000. The analyses were conducted on a subset of 48 h integrated samples collected in Los Angeles County, CA, Houston, TX, and Elizabeth, NJ within the Relationship of Indoor, Outdoor, and Personal Air (RIOPA) study. Both particle-bound (PM2.5; quartz fiber filter) and vapor-phase (PUF sorbant) chlordane concentrations were separately measured by GC/EI MS after solvent extraction. The outdoor (gas + particle) total chlordane (trans-chlordane + cis-chlordane + trans-nonachlor + cis-nonachlor) concentrations ranged from 0.036 to 4.27 ng m(-3) in Los Angeles County, from 0.008 to 11.00 ng m(-3) in Elizabeth, and from 0.062 to 1.77 ng m(-3) in Houston. The corresponding indoor total chlordane concentrations ranged from 0.037 to 112.0 ng m(-3) in Los Angeles County, from 0.260 to 31.80 ng m(-3) in Elizabeth, and from 0.410 to 38.90 ng m(-3) in Houston study homes. Geometric mean concentrations were higher in indoor air than outdoor air (1.98 vs 0.58 ng m(-3) in CA; 1.30 vs 0.17 ng m(-3) in NJ; 4.18 vs 0.28 ng m(-3) in TX), which suggests there are significant indoor sources of chlordane species in a subset of homes in each of the three cities. Calculated source strengths relate to home age, with the highest apparent indoor source strengths occurring in unattached single-family homes built during the period from 1945 to 1959. Principle indoor sources of chlordanes likely include volatilization from residues of indoor application of chlordanes and infiltration from subsurface and foundation application of chlordane-containing termiticides during home construction.  相似文献   

10.
Kitchen-area 22-h gravimetric PM2.5 and passive diffusion stain-tube carbon monoxide (CO) concentrations were measured in homes with open fire and improved wood cookstoves in two studies. In the first study (Guat-2), which also studied homes with gas cookstoves, three samples were collected per stove condition from each of three test houses. In the second study (Guat-3), one sample was collected per house from 15 open fire and 25 improved-stove houses. CO personal samples were also taken for mother and child in both studies. Spearman correlation coefficients (R) between kitchen-area CO and PM2.5 levels in homes using open fires or impoved wood cookstoves were high ranging from 0.92 (Guat-2) to 0.94 (Guat-3), as were those between the personal samples for mother and child ranging from 0.85 (Guat-3) to 0.96 (Guat-2). In general, the correlations were lower for less-polluted conditions. The study found that CO is a good proxy for PM2.5 in homes using open fires or planchas (improved wood cookstove with chimney) but not under gas stove use conditions. It also determined that mother personal CO is a good proxy for child's (under 2 years of age) personal CO and that area CO measurements are not strongly representative of personal CO measurements. These results generally support the use of Draeger CO passive diffusion tubes as a proxy for PM2.5 in such cases where a single type of emission source is the predominant source for CO and PM2.5.  相似文献   

11.
Variability of apparent particle density of an urban aerosol   总被引:2,自引:0,他引:2  
The day to day and diurnal variation of apparent particle density was studied using highly time-resolved measurements of particle number distribution and fine-particle mass concentration. The study was conducted in Erfurt, Germany, from January 1, 1999, to November 22, 2000. A setup consisting of a differential mobility particle spectrometer and a laser aerosol spectrometer was used for particle number distribution measurements. PM2.5 particle mass was measured in parallel on an hourly basis using a tapered element oscillating microbalance (TEOM) and on daily base by using a Harvard marple impactor (HI). For the estimation of the mean apparent density of particles, number size distributions were converted into volume size distributions, assuming that the particles were spherically shaped. The volume size distributions were integrated over the range of 10 nm to 2.03 microm Stokes equivalent diameter to obtain volume concentrations. Mean apparent particle density was calculated as ratio of mass concentration and volume concentration. The mean apparent particle density, determined from HI and number size distribution on a daily basis was 1.6 +/- 0.5 g cm(-3). We found a strong day-to-day variation of apparent density ranging from 1.0 to 2.5 g cm(-3) (5th and 95th percentile). Furthermore, the apparent density showed pronounced diurnal pattern both in summer and in winter and also on weekdays and weekends. The apparent density was lowest in the morning and highest in the afternoon. The mean apparent density on an hourly basis was 1.4 +/- 0.5 and 1.5 +/- 0.5 g cm(-3) for PM2.5TEOM and corrected PM2.5TEOM using regression equation between daily mass concentration of HI and TEOM, respectively. The strong diurnal variation of apparent particle density was associated predominantly with the vertical temperature inversion and with traffic intensity. Thus, the apparent particle density depends on the physical particle properties and might be related to chemical composition of the sampled particle.  相似文献   

12.
As anthropogenic emissions of ozone (O3) precursors, fine particulate matter (PM2.5), and PM2.5 precursors continue to decrease in the United States, the fraction of O3 and PM2.5 attributable to natural sources may become significant in some locations, reducing the efficacy that can be expected from future controls of anthropogenic sources. Modeling studies were conducted to estimate the contribution of biogenic emissions to the formation of O3 and PM2.5 in Nashville/TN and the northeastern United States. Two approaches were used to bound the estimates. In an anthropogenic simulation, biogenic emissions and their influence at the domain boundaries were eliminated. Contributions of biogenic compounds to the simulated concentrations of O3 and PM2.5 were determined by the deviation of the concentrations in the anthropogenic case from those in the base case. A biogenic simulation was used to assess the amounts of O3 and PM2.5 produced in an environment free from anthropogenic influences in emissions and boundary conditions. In both locations, the contribution of biogenic emissions to O3 was small (<23%) on a domain-wide basis, despite significant biogenic volatile organic compounds (VOC) emissions (65-89% of total VOC emissions). However, the production of O3 was much more sensitive to biogenic emissions in urban areas (22-34%). Therefore, the effects of biogenic emissions on O3 manifested mostly via their interaction with anthropogenic emissions of NOx. In the anthropogenic simulations, the average contribution of biogenic and natural sources to PM2.5 was estimated at 9% in Nashville/TN and 12% in the northeast domain. Because of the long atmospheric lifetimes of PM2.5, the contribution of biogenic/natural PM2.5 from the boundary conditions was higher than the contribution of biogenic aerosols produced within the domain. The elimination of biogenic emissions also affected the chemistry of other secondary PM2.5 components. Very little PM2.5 was formed in the biogenic simulations.  相似文献   

13.
The association between exposure to indoor particulate matter (PM) and damage to cultural assets has been of primary relevance to museum conservators. PM-induced damage to the "Last Supper" painting, one of Leonardo da Vinci's most famous artworks, has been a major concern, given the location of this masterpiece inside a refectory in the city center of Milan, one of Europe's most polluted cities. To assess this risk, a one-year sampling campaign was conducted at indoor and outdoor sites of the painting's location, where time-integrated fine and coarse PM (PM(2.5) and PM(2.5-10)) samples were simultaneously collected. Findings showed that PM(2.5) and PM(2.5-10) concentrations were reduced indoors by 88 and 94% on a yearly average basis, respectively. This large reduction is mainly attributed to the efficacy of the deployed ventilation system in removing particles. Furthermore, PM(2.5) dominated indoor particle levels, with organic matter as the most abundant species. Next, the chemical mass balance model was applied to apportion primary and secondary sources to monthly indoor fine organic carbon (OC) and PM mass. Results revealed that gasoline vehicles, urban soil, and wood-smoke only contributed to an annual average of 11.2 ± 3.7% of OC mass. Tracers for these major sources had minimal infiltration factors. On the other hand, fatty acids and squalane had high indoor-to-outdoor concentration ratios with fatty acids showing a good correlation with indoor OC, implying a common indoor source.  相似文献   

14.
There are currently no epidemiological studies on health effects of long-term exposure to ultrafine particles (UFP), largely because data on spatial exposure contrasts for UFP is lacking. The objective of this study was to develop a land use regression (LUR) model for UFP in the city of Amsterdam. Total particle number concentrations (PNC), PM10, PM2.5, and its soot content were measured directly outside 50 homes spread over the city of Amsterdam. Each home was measured during one week. Continuous measurements at a central urban background site were used to adjust the average concentration for temporal variation. Predictor variables (traffic, address density, land use) were obtained using geographic information systems. A model including the product of traffic intensity and the inverse distance to the nearest road squared, address density, and location near the port explained 67% of the variability in measured PNC. LUR models for PM2.5, soot, and coarse particles (PM10, PM2.5) explained 57%, 76%, and 37% of the variability in measured concentrations. Predictions from the PNC model correlated highly with predictions from LUR models for PM2.5, soot, and coarse particles. A LUR model for PNC has been developed, with similar validity as previous models for more commonly measured pollutants.  相似文献   

15.
Acrolein, a volatile, unsaturated aldehyde, is a known respiratory toxicant and one of the 188 most hazardous air pollutants identified by the U.S. EPA. A newly developed analytical method was used to determine residential indoor air concentrations of acrolein and other volatile aldehydes in nine homes located in three California counties (Los Angeles, Placer, Yolo). Average indoor air concentrations of acrolein were an order of magnitude higher than outdoor concentrations at the same time. All homes showed similar diurnal patterns in indoor air concentrations, with acrolein levels in evening samples up to 2.5 times higherthan morning samples. These increases were strongly correlated with temperature and cooking events, and homes with frequent, regular cooking activity had the highest baseline (morning) acrolein levels. High acrolein concentrations were also found in newly built, uninhabited homes and in emissions from lumber commonly used in home construction, suggesting indoor contributions from off-gassing and/or secondary formation. The results provide strong evidence that human exposure to acrolein is dominated by indoor air with little contribution from ambient outdoor air.  相似文献   

16.
The contribution of outdoor particulate matter (PM) to residential indoor concentrations is currently not well understood. Most importantly, separating indoor PM into indoor- and outdoor-generated components will greatly enhance our knowledge of the outdoor contribution to total indoor and personal PM exposures. This paper examines continuous light scattering data at 44 residences in Seattle, WA. A newly adapted recursive model was used to model outdoor-originated PM entering indoor environments. After censoring the indoor time-series to remove the influence of indoor sources, nonlinear regression was used to estimate particle penetration (P, 0.94 +/- 0.10), air exchange rate (a, 0.54 +/- 0.60 h(-1)), particle decay rate (k, 0.20 +/- 0.16 h(-1)), and particle infiltration (F(inf), 0.65 +/- 0.21) for each of the 44 residences. All of these parameters showed seasonal differences. The F(inf) estimates agree well with those estimated from the sulfur-tracer method (R2 = 0.78). The F(inf) estimates also showed robust and expected behavior when compared against known influencing factors. Among our study residences, outdoor-generated particles accounted for an average of 79 +/- 17% of the indoor PM concentration, with a range of 40-100% at individual residences. Although estimates of P, a, and k were dependent on the modeling technique and constraints, we showed that a recursive mass balance model combined with our censoring algorithms can be used to attribute indoor PM into its outdoor and indoor components and to estimate an average P, a, k, and F(inf), for each residence.  相似文献   

17.
Cooking, particularly frying, is an important source of particles indoors. Few studies have measured a full range of particle sizes, including ultrafine particles, produced during cooking. In this study, semicontinuous instruments with fine size discriminating ability were used to calculate particle counts in 124 size bins from 0.01 to 2.5 microm. Data were collected at 5 min intervals for 18 months in an occupied house. Tracer gas measurements were made every 10 min in each of 10 rooms of the house to establish air change rates. Cooking episodes (N = 44) were selected meeting certain criteria (high concentrations, no concurrent indoor sources, long smooth decay curves), and the number and volume of particles produced were determined for each size category. For each episode, the particle decay rate was determined and used to determine the source strength for each size category. The selected cooking episodes (mostly frying) were capable of producing about 10(14) particles over the length of the cooking period (about 15 min), more than 90% of them in the ultrafine (< 0.1 microm) range, with an estimated whole-house volume concentration of 50 (microm/cm)3. More than 60% of this volume occurred in the 0.1-0.3 microm range. Frying produced peak numbers of particles at about 0.06 microm, with a secondary peak at 0.01 microm. The peak volume occurred at a diameter of about 0.16 microm. Since the cooking episodes selected were biased toward higher concentrations, the particle concentrations measured during about 600 h of morning and evening cooking over a full year were compared to concentrations measured during noncooking periods at the same times. Cooking was capable of producing more than 10 times the ultrafine particle number observed during noncooking periods. Levels of PM2.5 were increased during cooking by a factor of 3. Breakfast cooking (mainly heating water for coffee and using an electric toaster) produced concentrations about half those produced from more complex dinnertime cooking. Although the number and volume concentrations observed depend on air change rates, house volume, and deposition rates due to fans and filters, the source strengths calculated here are independent of these variables and may be used to estimate number and volume concentrations in other types of homes with widely varying volumes, ventilation rates, and heating and air-conditioning practices.  相似文献   

18.
Particulate matter (PM) is a significant contributor to death and disease globally. This paper summarizes the work of an international expert group on the integration of human exposure to PM into life cycle impact assessment (LCIA), within the UNEP/SETAC Life Cycle Initiative. We review literature-derived intake fraction values (the fraction of emissions that are inhaled), based on emission release height and "archetypal" environment (indoor versus outdoor; urban, rural, or remote locations). Recommended intake fraction values are provided for primary PM(10-2.5) (coarse particles), primary PM(2.5) (fine particles), and secondary PM(2.5) from SO(2), NO(x), and NH(3). Intake fraction values vary by orders of magnitude among conditions considered. For outdoor primary PM(2.5), representative intake fraction values (units: milligrams inhaled per kilogram emitted) for urban, rural, and remote areas, respectively, are 44, 3.8, and 0.1 for ground-level emissions, versus 26, 2.6, and 0.1 for an emission-weighted stack height. For outdoor secondary PM, source location and source characteristics typically have only a minor influence on the magnitude of the intake fraction (exception: intake fraction values can be an order of magnitude lower for remote-location emission than for other locations). Outdoor secondary PM(2.5) intake fractions averaged over respective locations and stack heights are 0.89 (from SO(2)), 0.18 (NO(x)), and 1.7 (NH(3)). Estimated average intake fractions are greater for primary PM(10-2.5) than for primary PM(2.5) (21 versus 15), owing in part to differences in average emission height (lower, and therefore closer to people, for PM(10-2.5) than PM(2.5)). For indoor emissions, typical intake fraction values are ~1000-7000. This paper aims to provide as complete and consistent an archetype framework as possible, given current understanding of each pollutant. Values presented here facilitate incorporating regional impacts into LCIA for human health damage from PM.  相似文献   

19.
A special sampling system for measurements of size-segregated particles directly at the source of emission was designed and constructed. The central part of this system is a low-pressure cascade impactor with 10 collection stages for the size ranges between 15 nm and 16 microm. Its capability and suitability was proven by sampling particles atthe stack (100 degrees C) of a coal-fired power station in Slovenia. These measurements showed very reasonable results in comparison with a commercial cascade impactor for PM10 and PM2.5 and with a plane device for total suspended particulate matter (TSP). The best agreement with the measurements made by a commercial impactor was found for concentrations of TSP above 10 mg m(-3), i.e., the average PM2.5/PM10 ratios obtained by a commercial impactor and by our impactor were 0.78 and 0.80, respectively. Analysis of selected elements in size-segregated emission particles additionally confirmed the suitability of our system. The measurements showed that the mass size distributions were generally bimodal, with the most pronounced mass peak in the 1-2 microm size range. The first results of elemental mass size distributions showed some distinctive differences in comparison to the most common ambient anthropogenic sources (i.e., traffic emissions). For example, trace elements, like Pb, Cd, As, and V, typically related to traffic emissions, are usually more abundant in particles less than 1 microm in size, whereas in our specific case they were found at about 2 microm. Thus, these mass size distributions can be used as a signature of this source. Simultaneous measurements of size-segregated particles at the source and in the surrounding environment can therefore significantly increase the sensitivity of the contribution of a specific source to the actual ambient concentrations.  相似文献   

20.
XAFS spectroscopy has been employed to evaluate the effect of fuel compositions and combustion conditions on the amount, form, and distribution of sulfur and nickel in size-fractionated ROFA PM. Analysis of S K-edge XANES establish that sulfate is abundant in all PM. However, depending upon the combustion conditions, lesser amounts of thiophenic sulfur, metal sulfide, and elemental sulfur may also be observed. Least-squares fitting of Ni K-edge XANES reveals that most of the nickel in PM is present as bioavailable NiSO4.nH2O. The insoluble Ni mainly exists as a minor species, as nickel ferrite in PM2.5 (PM < 2.5 microm) and nickel sulfide, Ni(x)SY(y) in PM2.5+ (PM > 2.5 microm). The Ni K-edge XANES results are in agreement with the EXAFS data. Such detailed speciation of Ni and S in PM is needed for determining their mobility, bioavailability, and reactivity, and hence, their role in PM toxicity. This information is also important for understanding the mechanism of PM formation, developing effective remediation measures, and providing criteria for identification of potential emission sources. Transition metals complexing with sulfur is ubiquitous in nature. Therefore, this information on metal sulfur complex can be critical to a large body of environmental literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号