首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The problem of singular stresses in an infinite elastic solid containing a spherical cavity and a flat annular crack subjected to axial tension is considered. By application of an integral transform method and the theory of triple integral equations the problem is reduced to that of solving a singular integral equation of the first kind. The singular integral equation is solved numerically, and the influence of the spherical cavity upon the stress intensity factor and the influence of the annular crack upon the maximum stress at the surface of the spherical cavity are shown graphically in detail.  相似文献   

2.
In the present paper, by use of the boundary integral equation method and the techniques of Green fundamental solution and singularity analysis, the dynamic infinite plane crack problem is investigated. For the first time, the problem is reduced to solving a system of mixed-typed integral equations in Laplace transform domain. The equations consist of ordinary boundary integral equations along the outer boundary and Cauchy singular integral equations along the crack line. The equations obtained are strictly proved to be equivalent with the dual integral equations obtained by Sih in the special case of dynamic Griffith crack problem. The mixed-type integral equations can be solved by combining the numerical method of singular integral equation with the ordinary boundary element method. Further use the numerical method for Laplace transform, several typical examples are calculated and their dynamic stress intensity factors are obtained. The results show that the method proposed is successful and can be used to solve more complicated problems.  相似文献   

3.
The Hankel transform is used to obtain a complete solution for the dynamic stresses and displacements around a flat annular surface of a crack embedded in an infinite elastic cylinder, which is excited by normal torsional waves. The curved surface of the cylinder is assumed to be stress free. Solution of the problem is reduced to three simultaneous Fredholm integral equations. By finding the numerical solution of the simultaneous Fredholm integral equations the variations of the dynamic stress-intensity factors are obtained which are displayed graphically.  相似文献   

4.
Y. Shindo 《Acta Mechanica》1988,73(1-4):147-162
Summary The impact response of a crack in a semi-infinite body with a surface layer which is subjected to antiplane shear deformation is considered in this study. The semi-infinite body contains a crack near an interface. Using Laplace and Fourier transforms, the case of a crack perpendicular to the interface is reduced to a set of triple integral equations in the Laplace transform plane. The solution to the triple integral equations is then expressed in terms of a singular integral equation of the first kind. A numerical Laplace inversion routine is used to recover the time dependence of the solution. The dynamic stress intensity factors at the crack tips are obtained for several values of time, material constants, and geometrical parameters.With 8 Figures  相似文献   

5.
A linear thermoelastic problem of a slab containing an annular crack is solved. Using integral transform techniques, the problem is reduced to that of solving two singular integral equations of the first kind. The solution of the singular integral equation is obtained in the form of the product of the series of Chebyshev polynomials of the first kind and their weight functions. Thus the essential feature of the singular stress field near the crack is preserved and the crack tip stress intensity factor is easily evaluated. Numerical calculations are also carried out and the variations of the stress intensity factors are plotted against the geometry for various values of physical properties.  相似文献   

6.
A flat annular crack in a magnetoelectroelastic layer subjected to mechanical, electric and magnetic loadings is investigated under magnetoelectrically impermeable boundary condition on the crack surface. Using Hankel transform technique, the mixed boundary value problem is reduced to a system of singular integral equations. With the aid of Gauss-Chebyshev integration technique, the integral equations are further reduced to a system of algebraic equations. The field intensity factor and energy release rate are determined. Numerical results reveal the effects of electric and magnetic loadings and crack configuration on crack propagation and growth.  相似文献   

7.
The dynamic response of a central crack in a strip composite under normal impact is analyzed. The crack is oriented normally to the interfaces. Laplace and Fourier transform techniques are used to reduce the elastodynamic problem to a pair of dual integral equations. The integral equations are solved by using an integral transform technique and the result is expressed in terms of a Fredholm integral equation of the second kind. A numerical Laplace inversion routine is used to recover the time dependence of the solution. The dynamic stress intensity factor is determined and its dependence on time, the material properties and the geometrical parameters is discussed.  相似文献   

8.
无限长条板中弹性与粘弹性界面裂纹尖端场   总被引:6,自引:0,他引:6       下载免费PDF全文
研究无限长条板中粘弹性-弹性界面Griffith裂纹在 Ⅰ 型突加载荷作用下,裂纹尖端动态应力强度因子的时间响应。利用积分变换方法、Fourier和Laplace变换,分别推导出了弹性和粘弹性问题的控制方程组;引入位错密度函数,并结合边界条件,导出了反映裂纹尖端奇异性的Cauchy型奇异积分方程组,运用Chebyshev正交多项式化奇异积分方程组为代数方程组,用配点法进行求解;最后用Laplace积分变换数值反演方法,将拉氏域内的解反演到时间域内,求得动态应力强度因子的时间响应,并对材料参数的影响进行了分析。结果表明,剪切松弛参量对 Ⅰ 型动应力强度因子的影响小于对 Ⅱ 型的影响,而膨胀松弛参量对 Ⅰ 型动应力强度因子的影响大于对 Ⅱ 型的影响。   相似文献   

9.
This study is concerned with the fracture of an infinite thick-walled cylinder. The inner surface of the cylinder is stress free and the outer is rigidly fixed. The cylinder having a ring-shaped crack located at the symmetry plane is subjected to distributed compressive load on its surfaces. The Hankel and Fourier transform techniques are used for the solution of the field equations. By applying the boundary conditions, the singular integral equation in terms of crack surface displacement derivative is derived. By using an appropriate quadrature formula, the integral equation is reduced to a system of linear algebraic equations. Numerical results are obtained for the stress intensity factors at the edges of the crack, surfaces of which are subjected to uniform, linear and parabolic load distributions.  相似文献   

10.
Impact response of a cracked soft ferromagnetic medium   总被引:2,自引:0,他引:2  
A solution is given for the problem of an infinite soft ferromagnetic solid containing a central crack subjected to normal impact load. The solid is permeated by a uniform magnetostatic field normal to the crack surface. Laplace and Fourier transforms are employed to reduce the transient problem to the solution of integral equations in the Laplace transformed plane. A numerical Laplace inversion technique is used to compute the values of the dynamic stress-intensity factor, and the results are compared with the corresponding elastodynamic values to reveal the influence of magnetic field on the dynamic stress-intensity factor. The dynamic stress intensity factor is found to increase with increasing values of the magnetic field.With 4 Figures  相似文献   

11.
Impact response of a finite crack in an orthotropic strip   总被引:1,自引:0,他引:1  
Summary The elastodynamic response of a finite crack in an infinite orthotropic strip under normal impact is investigated in this study. The crack is situated symmetrically and oriented in a direction normal to the edges of the strip. Laplace and Hankel transforms are used to reduce the transient problem to the solution of a pair of dual integral equations in the Laplace transform plane. The solution to the dual integral equations is then expressed in terms of a Fredholm integral equation of the second kind. Numerical values on the dynamic stress intensity factor for some fiber-reinforced composite materials are obtained and the results are graphed to display the influence of the material orthotropy.  相似文献   

12.
A three-dimensional solution is presented for the transient response of an infinite plate which contains a rectangular crack. The Laplace and Fourier transforms are used to reduce the problem to a pair of dual integral equations. These equations are solved with the series expansion method. The stress intensity factors are defined in the Laplace transform domain, and they are inverted numerically in the physical space.  相似文献   

13.
研究加层电磁弹性材料界面裂纹在反平面剪切冲击载荷和面内电磁冲击载荷作用下的动态响应问题。假设裂纹面是电磁不导通的。采用Laplace变换、Fourier变换和位错密度函数将混合边值问题转化为求解Laplace域内Cauchy奇异积分方程。讨论了磁冲击载荷、电冲击载荷、材料参数及加层厚度对能量释放率的影响。该问题的解有助于分析含裂纹电磁弹性材料的动态断裂特性。  相似文献   

14.
Impact response of a finite crack in an orthotropic piezoelectric ceramic   总被引:1,自引:0,他引:1  
Y. Shindo  F. Narita  E. Ozawa 《Acta Mechanica》1999,137(1-2):99-107
Summary The transient dynamic stress intensity factor and dynamic energy release rate were determined for a cracked piezoelectric ceramic under normal impact in this study. A plane step pulse strikes the crack and stress wave diffraction takes place. Laplace and Fourier transforms are employed to reduce the transient problem to the solution of a pair of dual integral equations in the Laplace transform plane. The solution of the dual integral equations is then expressed in terms of a Fredholm integral equation of the second kind. A numerical Laplace inversion technique is used to compute the values of the dynamic stress intensity factor and the dynamic energy release rate for some piezoelectric ceramics, and the results are graphed to display the electroelastic interactions.  相似文献   

15.
《Engineering Fracture Mechanics》2004,71(9-10):1289-1305
In this paper the scattering of antiplane shear waves by a kinked crack for a linearly elastic medium is considered. In order to solve the proposed problem, at first the broken crack problem is reduced to two coupled single cracks. Fourier integral transform method is employed to calculate the scattered field of a single crack. In order to derive the Cauchy type integral equations of a broken crack and analyze the singular stresses at the breakpoint, the scattered field of a single crack is separated into a singular part and a bounded part. The single crack solution is applied to derive the generalized Cauchy type integral equations of a broken crack. The singular stress and singular stress order are analyzed in the paper and the dynamic stress intensity factor (DSIF) at breakpoint is defined. Numerical solution of the obtained Cauchy type integral equations gives the DSIF at the crack tips and at the breakpoint. Comparison of the present results in some special cases with the known results confirms the proposed method. Some typical numerical results and corresponding analysis are presented at the end of the paper.  相似文献   

16.
Ke Di  Yue-Cheng Yang 《Acta Mechanica》2012,223(12):2609-2620
A new multi-layered model is developed for the fracture analysis of a functionally graded interfacial zone with arbitrary material properties. It is assumed that the interfacial zone is divided into sub-layers with the material properties of each sub-layer varying in a power-law function. The model is used to study the crack problem in the functionally graded interfacial zone between two homogeneous half-planes under a dynamic anti-plane load. Using Fourier–Laplace transforms and the transfer matrix method, the mixed boundary value problem is reduced to a Cauchy singular integral equation, which is solved numerically in the Laplace transform domain. Laplace numerical inversion transform is employed to obtain the stress intensity factors. The results show that the new model is general and effective for the crack problem of the functionally graded interfacial zone with arbitrary properties.  相似文献   

17.
The three-dimensional response of two rectangular cracks in an infinite elastic medium to impact load is investigated in this paper. Fourier and Laplace transforms are applied and the problem is reduced to that of solving dual integral equations in the Laplace transform domain. To solve these equations, the crack surface displacement is expanded in a double series of functions which are zero outside of the cracks. The unknown coefficients accompanied in that series are solved with the aid of the Schmidt method. The dynamic stress intensity factors are computed numerically.  相似文献   

18.
H. J. Choi 《Acta Mechanica》2007,193(1-2):67-84
Summary The impact response of an inclined edge crack in a layered medium with a functionally graded interfacial zone is investigated under the state of antiplane deformation. The interfacial zone is modeled by a nonhomogeneous interlayer having the power-law variations of shear modulus and mass density between the coating and the substrate of dissimilar homogeneous properties. Based on the Laplace and Fourier integral transform technique and the coordinate transformations of basic field variables, the transient crack problem is reduced to the solution of a singular integral equation with a generalized Cauchy kernel in the Laplace transform domain. The crack-tip response in the physical domain is recovered through the inverse Laplace transform to evaluate the dynamic mode III stress intensity factors as functions of time. The peak values of the dynamic stress intensity factors are further obtained versus the crack orientation angle, addressing the effects of crack obliquity on the overshoot characteristics of the transient crack-tip behavior for various combinations of material and geometric parameters of the layered medium.  相似文献   

19.
The torsional impact response of a penny-shaped interface crack in a layered composite is considered in this study. The geometry of the composite consists of two bonded dissimilar elastic layers which are sandwiched between two half-spaces made of a different material. Laplace and Hankel transforms are used to reduce the problem to the solution of a pair of dual integral equations. These equations are solved by using an integral transform technique and the result is expressed in terms of a Fredholm integral equation of the second kind. A numerical Laplace inversion routine is used to recover the time dependence of the solution. The dynamic stress intensity factor is determined and its dependence on time, the material properties and the geometry parameters is discussed.  相似文献   

20.
The elastodynamic response of an infinite orthotropic material with finite crack under concentrated loads is examined. Solution for the stress intensity factor history around the crack tips is found. Laplace and Fourier transforms are employed to solve the equations of motion leading to a Fredholm integral equation on the Laplace transform domain. The dynamic stress intensity factor history can be computed by numerical Laplace transform inversion of the solution of the Fredholm equation. Numerical values of the dynamic stress intensity factor history for some example materials are obtained. This solution can be used as a Green's function to solve dynamic problems involving fini te cracks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号