首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We developed a simple and accurate method for determining deuterium enrichment of glucose hydrogen atoms by electron impact gas chromatography mass spectrometry (GC/MS). First, we prepared 18 derivatives of glucose and screened over 200 glucose fragments to evaluate the accuracy and precision of mass isotopomer data for each fragment. We identified three glucose derivatives that gave six analytically useful ions: (1) glucose aldonitrile pentapropionate (m/z 173 derived from C4-C5 bond cleavage; m/z 259 from C3-C4 cleavage; m/z 284 from C4-C5 cleavage; and m/z 370 from C5-C6 cleavage); (2) glucose 1,2,5,6-di-isopropylidene propionate (m/z 301, no cleavage of glucose carbon atoms); and (3) glucose methyloxime pentapropionate (m/z 145 from C2-C3 cleavage). Deuterium enrichment at each carbon position of glucose was determined by least-squares regression of mass isotopomer distributions. The validity of the approach was tested using labeled glucose standards and carefully prepared mixtures of standards. Our method determines deuterium enrichment of glucose hydrogen atoms with an accuracy of 0.3 mol %, or better, without the use of any calibration curves or correction factors. The analysis requires only 20 μL of plasma, which makes the method applicable for studying gluconeogenesis using deuterated water in cell culture and animal experiments.  相似文献   

2.
A novel and practical technique for performing both parent and neutral loss (P&NL) monitoring experiments on a quadrupole ion trap mass spectrometer is presented. This technique is capable of performing scans analogous to the parent and neutral loss scans routinely applied on tandem-in-space instruments and allows for the screening of a sample to detect analytes of a specific compound class on a chromatographic time-scale. Acylcarnitines were chosen as the model compound class to demonstrate the analytical utility of P&NL monitoring because of their amenability to electrospray ionization (ESI), their unique and informative MS/MS fragmentation pattern, and their importance in biological functions. The [M + H]+ ions of all acylcarnitines dissociate to produce neutral losses of 59 and 161 amu and common product ions at m/z 60, 85, and 144. Both the neutral loss monitoring of 59 amu and the parent ion monitoring of m/z 85 are shown to be capable of identifying acylcarnitine [M + H]+ ions in a synthetic mixture and spiked pig plasma. The neutral loss monitoring of 59 amu is successful in detecting acylcarnitines in an unspiked pig plasma sample.  相似文献   

3.
A multiresidue method for the detection of five important beta-lactam antibiotics (amoxicillin, ampicillin, cloxacillin, oxacillin, penicillin G) in fresh milk is presented that allows quantitation of the analytes well below established legislative limits. The method avoids the use of acid during the extraction procedure and entails a cleanup step over a C18 cartridge. The analytes are separated and detected by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) using a stable isotope-labeled internal standard. Mass spectral acquisition is done in the positive ion mode by applying selected reaction monitoring of two or more fragmentation transitions per analyte to provide a high degree of sensitivity and specificity. The typical recoveries for all five beta-lactams in fresh milk ranged from 76 to 94% at a fortification level of 4 microg/kg. This study also addresses common problems encountered in the stability of penicillins during sample preparation as well as the employment of postcolumn infusion of a standard compound to verify potential matrix-induced signal suppression in ESI-MS.  相似文献   

4.
While investigating the in-source CID fragmentation of nonsteroidal antiinflammatory drugs (NSAIDs), it was noticed that the same fragment ion (nominal mass) formed in either positive or negative ion electrospray for a suite of NSAIDs. For example, ibuprofen with a molecular mass of 206, fragments to the m/z 161 ion in negative ion from its deprotonated molecule (m/z 205, [M - H]-) and fragments to the m/z 161 ion in positive ion from its protonated molecule (m/z 207, [M + H]+). This fragment ion was euphemistically called a "twin ion"because of the same nominal mass despite opposite charge. The CID fragmentation of the twin ions was confirmed also by LC/MS/MS ion trap. Accurate mass measurements in negative ion show that the loss was due to CO2 (measured loss of 43.9897 atomic mass units (u) versus calculated loss of 43.9898 u for N = 10) and in positive ion the loss is due to HCOOH (measured loss of 46.0048 u versus calculated loss of 46.0055 u, N = 10). It was realized that, in fact, the ions were not "identical mass twins of opposite charge" but separated in accurate mass by two electrons. The accurate mass measurement by liquid chromatography/time-of-flight-mass spectrometry (LC/TOF-MS) can distinguish between the two fragment ions of ibuprofen (161.13362 +/- 0.00019 and 161.13243 +/- 0.00014 for N = 20). This experiment was repeated for two other NSAIDs, and the mass of an electron was measured as the difference between the twin ions, which was 0.00062 u +/- 14.8% relative standard deviation (N = 20 analyses). Thus, the use of continuous calibration makes it possible to measure the mass of an electron within one significant figure using the NSAID solution. This result shows the importance of including electron mass in accurate mass measurements and the value of a benchmark test for LC/TOF-MS mass accuracy.  相似文献   

5.
A strategy for detection of carnitine and acylcarnitines is introduced. This versatile system has four components: (1) isolation by protein precipitation/desalting and cation-exchange solid-phase extraction, (2) derivatization of carnitine and acylcarnitines with pentafluorophenacyl trifluoromethanesulfonate, (3) sequential ion-exchange/reversed-phase chromatography using a single non-end-capped C8 column, and (4) detection of carnitine and acylcarnitine pentafluorophenacyl esters using an ion trap mass spectrometer. Recovery of carnitine and acylcarnitines from the isolation procedure is 77-85%. Derivatization is rapid and complete with no evidence of acylcarnitine hydrolysis. Sequential ion-exchange/reversed-phase HPLC results in separation of reagent byproducts from derivatized carnitine and acylcarnitines, followed by reversed-phase separation of carnitine and acylcarnitine pentafluorophenacyl esters. Detection by MS/MS is highly selective, with carnitine pentafluorophenacyl ester yielding a strong product ion at m/z 311 and acylcarnitine pentafluorophenacyl ester fragmentation yielding two product ions: (1) loss of m/z 59 and (2) generation of an ion at m/z 293. To demonstrate this analytical strategy, phosphate buffered serum albumin was spiked with carnitine and 15 acylcarnitines and analyzed using the described protein precipitation/desalting and cation-exchange solid-phase extraction isolation, derivatization with pentafluorophenacyl trifluoromethanesulfonate, chromatography using the sequential ion-exchange/reversed-phase chromatography HPLC system, and detection by MS and MS/MS. Successful application of this strategy to the quantification of carnitine and acetylcarnitine in rat liver is shown.  相似文献   

6.
Mass spectrometric (MS) methods are used for the analysis of two novel nitramine explosives-hexanitrohexaazaisowurzitane (HNIW) and 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazaisowurzitane (DTIW). The methods include electrospray (ESI) and atmospheric pressure chemical ionization techniques for liquid chromatography/MS (LC/MS), chemical ionization for direct introduction (DCI), and gas chromatography/MS (CI-GC/MS). It is found that HNIW (438 Da) is detectable using both positive and negative modes of DCI and in the negative mode ESI-MS. Several anions were found to complex with HNIW, e.g., CF3CO2-, Cl-, Br-, I-, NO3-, and NO2-. On the other hand, DTIW could only be detected using positive DCI and CI-GC/MS, where an MH+ ion (m/z 263) was formed. The fragmentation pathways of the two nitramines were further studied by MS2 experiments. Apparently, the main fragmentation pathway of the MH+ ion of DTIW involves the loss of nitrous acid. Several anion adducts of HNIW that were studied dissociate to afford neutral HNIW and the added anions. However, Cl-, Br-, I-, and NO2- afford a series of fragments that resulted from the dissociation of the isowurzitane structure. For these anions, limit of detection was also found. To understand some of the HNIW fragmentation pathways, DFT calculations were used.  相似文献   

7.
We present atmospheric pressure laser-induced acoustic desorption chemical ionization (AP/LIAD-CI) with O(2) carrier/reagent gas as a powerful new approach for the analysis of saturated hydrocarbon mixtures. Nonthermal sample vaporization with subsequent chemical ionization generates abundant ion signals for straight-chain, branched, and cycloalkanes with minimal or no fragmentation. [M - H](+) is the dominant species for straight-chain and branched alkanes. For cycloalkanes, M(+?) species dominate the mass spectrum at lower capillary temperature (<100 °C) and [M - H](+) at higher temperature (>200 °C). The mass spectrum for a straight-chain alkane mixture (C(21)-C(40)) shows comparable ionization efficiency for all components. AP/LIAD-CI produces molecular weight distributions similar to those for gel permeation chromatography for polyethylene polymers, Polywax 500 and Polywax 655. Coupling of the technique to Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) for the analysis of complex hydrocarbon mixtures provides unparalleled mass resolution and accuracy to facilitate unambiguous elemental composition assignments, e.g., 1754 peaks (rms error = 175 ppb) corresponding to a paraffin series (C(12)-C(49), double-bond equivalents, DBE = 0) and higher DBE series corresponding to cycloparaffins containing one to eight rings. Isoabundance-contoured plots of DBE versus carbon number highlight steranes (DBE = 4) of carbon number C(27)-C(30) and hopanes of C(29)-C(35) (DBE = 5), with sterane-to-hopane ratio in good agreement with field ionization (FI) mass spectrometry analysis, but performed at atmospheric pressure. The overall speciation of nonpolar, aliphatic hydrocarbon base oil species offers a promising diagnostic probe to characterize crude oil and its products.  相似文献   

8.
Borges CR 《Analytical chemistry》2007,79(13):4805-4813
A chemometrics-based data analysis concept has been developed as a substitute for manual inspection of extracted ion chromatograms (XICs), which facilitates rapid, analyst-mediated interpretation of GC- and LC/MS(n) data sets from samples undergoing qualitative batchwise screening for prespecified sets of analytes. Automatic preparation of data into two-dimensional row space-derived scatter plots (row space plots) eliminates the need to manually interpret hundreds to thousands of XICs per batch of samples while keeping all interpretation of raw data directly in the hands of the analyst-saving great quantities of human time without loss of integrity in the data analysis process. For a given analyte, two analyte-specific variables are automatically collected by a computer algorithm and placed into a data matrix (i.e., placed into row space): the first variable is the ion abundance corresponding to scan number x and analyte-specific m/z value y, and the second variable is the ion abundance corresponding to scan number x and analyte-specific m/z value z (a second ion). These two variables serve as the two axes of the aforementioned row space plots. In order to collect appropriate scan number (retention time) information, it is necessary to analyze, as part of every batch, a sample containing a mixture of all analytes to be tested. When pure standard materials of tested analytes are unavailable, but representative ion m/z values are known and retention time can be approximated, data are evaluated based on two-dimensional scores plots from principal component analysis of small time range(s) of mass spectral data. The time-saving efficiency of this concept is directly proportional to the percentage of negative samples and to the total number of samples processed simultaneously.  相似文献   

9.
A new liquid chromatography-tandem mass spectrometric (LC-MS/MS) approach, based on the precursor ion scanning technique using a triple-stage quadrupole, has been developed to detect free and protein-bound histidine (His) residues modified by reactive carbonyl species (RCS) generated by lipid peroxidation. This approach has been applied to urines from Zucker obese rats, a nondiabetic animal model characterized by obesity and hyperlipidemia, where RCS formation plays a key role in the development of renal and cardiac dysfunction. The immonium ion of His at m/z 110 was used as a specific product ion of His-containing peptides to generate precursor ion spectra, followed by MS2 acquisitions of each precursor ion of interest for structural characterization. By this approach, three novel adducts, which are excreted in free form only, have been identified, two of them originating from the conjugation of 4-hydroxy-trans-2-nonenal (HNE) to His, followed by reduction/oxidation of the aldehyde: His-1,4-dihydroxynonane (His-DHN), His-4-hydroxynonanoic acid (His-HNA), and carnosine-HNE, this last recognized in previous in vitro studies as a new potential biomarker of carbonyl stress. No free His-HNE was found in urines, which was detected only in protein hydrolysates. The same LC-MS/MS method, working in multiple reaction monitoring (MRM) mode, has been developed, validated, and applied to quantitatively profile in Zucker urines both conventional (1,4-dihydroxynonane mercapturic acid, DHN-MA) and the newly identified adducts, except His-HNA. The analytes were separated on a C12 reversed-phase column by gradient elution from 100% A (water containing 5 mM nonafluoropentanoic acid) to 80% B (acetonitrile) in 24 min at a flow rate of 0.2 mL/min and analyzed for quantification in MRM mode by applying the following precursor-to-product ion transitions m/z 322.2 --> 164.1 + 130.1 (DHN-MA), m/z 314.7 --> 268.2 + 110.1 (His-DHN), m/z 312.2 --> 110.1 + 156.0 (His-HNE), m/z 383.1 --> 266.2 + 110.1 (CAR-HNE), m/z 319.2 --> 301.6 + 156.5 (H-Tyr-His-OH, internal standard). Precision and accuracy data, as well as the lower limits of quantification in urine, were highly satisfactory (from 0.01 nmol/mL for CAR-HNE, His-DHN, His-HNE, to 0.075 nmol/mL for DHN-MA). The method, applied to evaluate for the first time the advanced lipoxidation end products profile in urine from obese Zucker rats, an animal model for the metabolic syndrome, has proved to be suitable and sensitive enough for testing in vivo the carbonyl quenching ability of newly developed RCS sequestering agents.  相似文献   

10.
Brevetoxins, the toxic components of "red tide" algae, all share one of two robust polycyclic ether backbone structures, but they are distinguished by differing side-chain substituents. Electrospray ionization mass spectrometry analyses of brevetoxins have shown that the polyether structure invariably has a very high affinity for sodium cations that results in the production of abundant (M + Na)+ ions even when sodium cations are only present as impurities. Because the ionic charge tends to remain localized on the sodium atom and because at least two bonds must be broken in order to produce polycyclic backbone fragmentation, it is extremely difficult to obtain abundant product ions (other than Na+) from (M + Na)+ brevetoxin precursor ions in low-energy collision-induced dissociation (CID) MS/MS experiments. This report establishes that acid additives (oxalic acid, trifluoroacetic acid, and particularly hydrochloric acid) in aqueous methanol solutions can promote high yields of protonated brevetoxin molecules (MH+ ions) for Btx-1, -2, and -9 brevetoxins. Most importantly, unlike their (M + Na)+ counterparts, MH+ precursor ions offer readily detectable product ions in CID MS/MS experiments, even under low-energy collisions. This direct structural characterization approach has provided decomposition information from brevetoxins that was previously inaccessible, including the identification of diagnostic product ions for "type A" brevetoxins (m/z 611) and "type B" brevetoxins (m/z 779, 473, 179) and characteristic ions for Btx-1 (m/z 221, 139), Btx-2 (m/z 153), and Btx-9 (m/z 157, 85). Precursor ion scans and constant neutral loss scans are proposed to enable screening of individual type A or type B brevetoxins present in naturally occurring mixtures.  相似文献   

11.
Batt AL  Aga DS 《Analytical chemistry》2005,77(9):2940-2947
Solid-phase extraction (SPE) and liquid chromatography in combination with ion trap mass spectrometry (LC/MS/MS) conditions were optimized for the simultaneous analysis of 13 antibiotics belonging to multiple classes and caffeine in 3 different water matrixes. The single-cartridge extraction step was developed using a reversed-phase cartridge, resulting in recoveries for the 14 compounds ranging from 71 to 119% with relative standard deviations of 16% or lower. The analytes were separated in one chromatographic run, and the SPE-LC/MS/MS detection limits ranged from 0.03 to 0.19 microg/L. The SPE procedure was validated in groundwater, surface water, and wastewater. The analysis of samples from each of the three water matrixes revealed clindamycin (1.1 microg/L) in surface water and multiple antibiotics in wastewater (0.10-1.3 microg/L). The use of identification points to unambiguously assign the identity of antibiotics in various water matrixes was applied to an ion trap data-dependent scanning method, which simultaneously collects full scan and full scan MS/MS data for the unequivocal identification of target analytes.  相似文献   

12.
A direct enzyme-linked immunosorbent assay for the detection of the short-chain sulfophenylcarboxylic acids (SPCs), the main metabolites of the linear alkylbenzenesulfonates, is reported. Six SPCs (2C3, 2C4, 3C4, 2C5, 3C5, 3C6), differing in the length of the alkyl chain (between C3 and C6) and in the position of the phenylsulfonic group versus the carboxylic group, have been synthesized. Antibodies have been raised against a mixture of the corresponding horseshoe crab hemocyanin conjugates prepared by coupling the carboxylic acid to the lysine amino acid residues. The immunoassay As115/3C4-HRP achieves an IC50 value of 23 nM (6.67 microg L(-1)) and a detection limit of 0.85 nM (0.24 microg L(-1)), using as standard analyte an equimolar mixture of the six SPCs. The immunoassay has found to work better in media with low or moderate ionic strength (4-30 mS cm(-1)). The decrease in the detectability produced by the potential formation of SPC salts with divalent cations such as Ca2+ can be prevented by lowering the pH of the assay medium below the pKa value of the SPC carboxylic group and using a buffer chelating with properties such as citrate buffer. The assay can be considered specific for short-chain SPCs since congeners with longer alkyl chains and other pollutants containing sulfonic groups in their structure do not interfere significantly in the assay. Preliminary experiments addressed to evaluate the potential application of this assay to environmental water samples demonstrate the usefulness of the assay.  相似文献   

13.
A rapid, sensitive, and specific method was developed for determining perchlorate anion in lettuce, cantaloupe, bottled water, and milk. A test portion of chopped crop homogenate was extracted with diluted nitric acid and filtered. Milk proteins were precipitated with acetonitrile, and the supernatant, after centrifugation, was cleaned up on a graphitized carbon solid-phase extraction column. Water samples were analyzed directly. All test solutions were syringe filtered and mixed with an 18O4-labeled perchlorate internal standard before ion chromatography-tandem mass spectrometry. A strong anion exchange column eluted with 100 mM ammonium acetate in 50:50 (v/v) acetonitrile/water was interfaced via electrospray ionization to a triple stage quadrupole mass spectrometer operated in the negative ion mode. The labeled internal standard corrected for any sample matrix effects on measured signals. Four parent-to-product ion transitions, for loss of oxygen, were monitored for native and 18O4-labeled perchlorate anion, respectively: 35Cl-perchlorate, m/z 99 --> 83 and 107 --> 89; 37Cl-perchlorate, m/z 101 --> 85 and 109 --> 91. The limit of quantitation was 1.0 microg/kg in lettuce, 2.0 microg/kg in cantaloupe, 0.50 microg/L in bottled water, and 3.0 microg/L in milk. Native perchlorate was recovered from fortified test portions in the range 93-107% for lettuce, 107-114% for cantaloupe, 100-115% for bottled water, and 99-101% for milk.  相似文献   

14.
Benzalkonium chlorides (BACs) were successfully extracted from sediment samples using a new methodology based on accelerated solvent extraction (ASE) followed by an on-line cleanup step. The BACs were detected by liquid chromatography/ion trap mass spectrometry (LC/MS) or tandem mass spectrometry (MS/MS) using an electrospray interface operated in the positive ion mode. This methodology combines the high efficiency of extraction provided by a pressurized fluid and the high sensitivity offered by the ion trap MS/MS. The effects of solvent type and ASE operational variables, such as temperature and pressure, were evaluated. After optimization, a mixture of acetonitrile/water (6:4 or 7:3) was found to be most efficient for extracting BACs from the sediment samples. Extraction recoveries ranged from 95 to 105% for C12 and C14 homologues, respectively. Total method recoveries from fortified sediment samples, using a cleanup step followed byASE, were 85% for C12BAC and 79% for C14BAC. The methodology developed in this work provides detection limits in the subnanogram per gram range. Concentrations of BAC homologues ranged from 22 to 206 microg/kg in sediment samples from different river sites downstream from wastewater treatment plants. The high affinity of BACs for soil suggests that BACs preferentially concentrate in sediment rather than in water.  相似文献   

15.
The application of liquid chromatography tandem mass spectrometry for simultaneous analysis of major human cytochrome P450 activities via a single atmospheric pressure ionization (API) LC/MS/MS method has been hampered by the preferred detection of 6-hydroxychlorzoxazone (HCZ), the metabolite of the CYP2E1 probe, chlorzoxazone, under negative API. An initial simulation of the dissociation constants suggested the potential ionization of the enol form of HCZ at low pH, and the accurate mass measurements confirmed the presence of the protonated HCZ signal under (+) ESI at pH 3. However, the CID spectrum of the protonated HCZ resulted in a few intense, but uncommon, fragment ions that could be utilized for specific selected reaction monitoring (SRM) transitions. The deduced elemental compositions of these fragment ions indicated possible aromatic ring opening for the first two intense product ions at m/z 130 and 115, as well as chlorine radical loss for the third ion at m/z 151. Further precursor and product ion scan studies, along with the deuterium ion exchange in solution, revealed the involvement of three distinct pathways of fragmentation. The m/z 186-->130 transition, which was shown to be specific in human plasma and rat hepatic microsomes, was further combined with the SRM transition of reserpine (internal standard) and eight probe substrates for human cytochrome P450 isoforms. This led to the development of a full LC/MS/MS method capable of analyzing a total of nine human P450 activities within 3 min, including CYP2E1, using a single assay in the (+) ESI mode. The HCZ assay showed excellent linearity with a coefficient of determination (R2) greater than 0.98 at dynamic range of 0.05 (LOQ) to 40 microM. Preliminary data from the three-day validation of the HCZ assay indicated that the accuracy and precision for quality control samples was within +/- 15% of the spiked concentration at all levels.  相似文献   

16.
In the presented work, 5,5-diphenylimidazolidine-2,4-dione (phenytoin) (DFTD), 5,5-diphenylimidazolidine-2-thione-,4-one (thiophenytoin) (DFID) and 2-(4'-methoxy-benzylidenimine) thiophenole (MBIP) modified activated carbons have been used for the solid phase extraction of copper and lead ions prior to their flame atomic absorption spectrometric determinations. The influences of the various analytical parameters including pH, amounts of reagent, sample volume and eluent type, etc. on the recovery efficiencies of copper and lead ions were investigated. The influences of alkaline, earth alkaline and some transition metals on the adsorption of the analytes were also examined. The detection limits by three sigma for analyte ions were 0.65 and 0.42 microg L(-1) using activated carbon modified with DFID; 0.52 and 0.37 microg L(-1) using activated carbon modified with DFTD and 0.46 and 0.31 microg L(-1) using activated carbon modified with MBIP for Pb(II) and Cu(II), respectively. The procedure was applied to the determination of analytes in natural waters, soil, and blood samples with satisfactory results (recoveries greater than 95%, R.S.D.'s lower than 4%).  相似文献   

17.
Positive ion mode collision-activated dissociation tandem mass spectrometry (CAD MS/MS) of O-sulfopeptides precludes determination of sulfonated sites due to facile proton-driven loss of the highly labile sulfonate groups. A previously proposed method for localizing peptide and protein O-sulfonation involves derivatization of nonsulfonated tyrosines followed by positive ion CAD MS/MS of the corresponding modified sulfopeptides for diagnostic sulfonate loss. This indirect method relies upon specific and complete derivatization of nonsulfonated tyrosines. Alternative MS/MS activation methods, including positive ion metastable atom-activated dissociation (MAD) and metal-assisted electron transfer dissociation (ETD) or electron capture dissociation (ECD) provide varying degrees of sulfonate retention. Sulfonate retention has also been reported following negative ion MAD and electron detachment dissociation (EDD), which also operates in negative ion mode in which sulfonate groups are less labile than in positive ion mode. However, an MS/MS activation technique that can effectively preserve sulfonate groups while providing extensive backbone fragmentation (translating to sequence information, including sulfonated sites) with little to no noninformative small molecule neutral loss has not previously been realized. Here, we report that negative ion CAD, EDD, and negative ETD (NETD) result in sulfonate retention mainly at higher charge states with varying degrees of fragmentation efficiency and sequence coverage. Similar to previous observations from CAD of sulfonated glycosaminoglycan anions, higher charge states translate to a higher probability of deprotonation at the sulfonate groups thus yielding charge-localized fragmentation without loss of the sulfonate groups. However, consequently, higher sulfonate retention comes at the price of lower sequence coverage in negative ion CAD. Fragmentation efficiency/sequence coverage averaged 19/6% and 33/20% in EDD and NETD, respectively, both of which are only applicable to multiply-charged anions. In contrast, the recently introduced negative ion ECD showed an average fragmentation efficiency of 69% and an average sequence coverage of 82% with complete sulfonate retention from singly- and doubly-deprotonated sulfopeptide anions.  相似文献   

18.
An automated screening method is presented that uses MALDI in-source decay (MALDI-ISD) of disulfide bonds for identification of disulfide-linked peptides in MALDI mass spectra. Peptides released by ISD of a disulfide bond can be detected at an m/z ratio that corresponds to the singly protonated peptide with a reduced cysteine residue. Therefore, screening of peak lists for signal patterns that fulfill the equation, m/z (peak A) + m/z (peak B) - m/z (H2 + H+) = m/z (peak C), facilitated identification of putative ISD fragments of disulfide-linked peptides (peaks A and B) and their precursors (peak C). Signals (peak C) from putatively disulfide-linked peptides were subjected to LIFT-TOF/TOF-MS to confirm the existence of a disulfide bond. Using this method, we identified all 4 disulfide bonds in RNAseA and 8 two-disulfide clusters comprising 16 out of the 17 disulfide bonds in BSA. The presented screening method accelerated the identification of disulfide bonds in RNAseA and BSA, because the number of MS/MS spectra to be acquired was reduced by 1 order of magnitude. Less than 5% of the signals selected for LIFT-TOF/TOF-MS did not correspond to disulfide-linked peptides. Furthermore, the number of possible assignments for disulfide-linked peptides was reduced by 2-3 orders of magnitude, because knowledge of the mechanism of disulfide bond fragmentation by ISD permitted use of stricter rules for the interpretation of mass spectra. Therefore, interpretation of MS/ MS spectra of disulfide-linked peptides was considerably simplified in comparison to conventional approaches.  相似文献   

19.
Tomy GT  Stern GA 《Analytical chemistry》1999,71(21):4860-4865
A method for quantifying medium-chain (C(14)-C(17)) polychloroalkanes (mPCAs) in environmental matrixes by accelerated solvent extraction high-resolution gas chromatography/electron capture negative ion high-resolution mass spectrometry in the selected ion monitoring mode is presented. The formula group abundance profiles of industrial mPCA mixtures, which are used as standards, and of samples are first determined by monitoring [M - Cl](-) ions of specific m/z values corresponding to the molecular formulas present and by correcting the integrated ion signals for the fractional abundance of the specific m/z value monitored and the number of chlorine atoms in the formula group. mPCA concentrations in environmental samples are then determined by comparing the response of a specific m/z peak in the sample to that in the standard. Extraction recoveries of mPCAs from spiked fish and sodium sulfate (in place of sediment) were >79%. Method detection limits were 13 ng/g for fish and 1.4 ng/μL for sediment, while the analytical detection limit was ~200 pg, at a signal-to-noise ratio of 4:1. By this method, mPCAs were detected in biota and sediment from the mouth of the Detroit River (MI) and ranged from 70 to 900 ng/g. The simultaneous quantitation of C(10)-C(13) (sPCAs) and C(14)-C(17) PCAs, based on monitoring two specific m/z peaks, one characteristic of sPCAs and the other of mPCAs, is also demonstrated.  相似文献   

20.
The collision-induced dissociation (CID) of a range of deprotonated fatty acid standards was studied using linear ion trap mass spectrometry. Neutral losses of 78, 98, and 136 Da were consistently observed for fatty acids with five or more double bonds. Comparison of the MS/MS spectra of docosahexaenoic acid (DHA) and universally (13)C-labeled DHA allowed the molecular formulas for these neutral losses to be determined as C(6)H(6), C(5)H(6)O(2), and C(8)H(8)O(2). Knowledge of fatty acid fragmentation processes was then applied to identify fatty acids from a sea anemone, Aiptasia pulchella, and dinoflagellate symbiont, Symbiodinium sp. extract. Using HPLC-MS, fatty acids were separated and analyzed by tandem mass spectrometry in data-dependent acquisition mode. Neutral loss chromatograms for 78, 98, and 136 Da allowed the identification of long-chain fatty acids with five or more double bonds. On the basis of precursor ion m/z ratios, chain length and degree of unsaturation for these fatty acids were determined. The application of this technique to an Aiptasia sp.-Symbiodinium sp. lipid extract enabled the identification of the unusual, long-chain fatty acids 24:6, 26:6, 26:7, 28:7, and 28:8 during a single 40 min HPLC-MS analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号