首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thin webs are widely used in the aerospace industry for the advantages of compact structure, light weight and high strength-to-weight ratio. Due to its low rigidity, serious machining error may occur, therefore, Finite Element method and mechanism analysis are usually utilized to modeling its deformation. However, they are very time-consuming and only suitable for elastic deformation error. In this study, an integrated error compensation method is proposed based on on-machine measurement (OMM) inspection and error compensation. The OMM inspection is firstly applied to measure the comprehensive machining errors. The Hampel filtering is then used to eliminate outliers, followed by the triangulation-based cubic interpolation as well as a machine learning algorithm which are used to establish the compensation model. At last, the real time compensation of high-density cutting points is realized by developing the compensation system based on External Machine Zero Point Shift (EMZPS) function of machine tool. Three sets of machining experiment of a typical thin web part are conducted to validate the feasibility and efficiency of the proposed method. Experiment results revealed that after compensation, the comprehensive machining errors were controlled under different machining conditions and 58.1%, 68.4% and 62.6% of the machining error ranges were decreased, respectively. This method demonstrates immense potential for further applications in efficiency and accuracy improvement of thin-walled surface parts.  相似文献   

2.
Low weight and good toughness thin plate parts are widely used in modern industry, but its flexibility seriously impacts the machinability. Plenty of studies focus on the influence of machine tool and cutting tool on the machining errors. However, few researches focus on compensating machining errors through the fixture. In order to improve the machining accuracy of thin plate-shape part in face milling, this paper presents a novel method for compensating the surface errors by prebending the workpiece during the milling process. First, a machining error prediction model using finite element method is formulated, which simplifies the contacts between the workpiece and fixture with spring constraints. Milling forces calculated by the micro-unit cutting force model are loaded on the error prediction model to predict the machining error. The error prediction results are substituted into the given formulas to obtain the prebending clamping forces and clamping positions. Consequently, the workpiece is prebent in terms of the calculated clamping forces and positions during the face milling operation to reduce the machining error. Finally, simulation and experimental tests are carried out to validate the correctness and efficiency of the proposed error compensation method. The experimental measured flatness results show that the flatness improves by approximately 30 percent through this error compensation method. The proposed method not only predicts the machining errors in face milling thin plate-shape parts but also reduces the machining errors by taking full advantage of the workpiece prebending caused by fixture, meanwhile, it provides a novel idea and theoretical basis for reducing milling errors and improving the milling accuracy.  相似文献   

3.
袁明 《机械与电子》2023,41(5):76-80
薄壁盘由于材料刚性较差等原因难以确保零件加工精度,容易引起变形,对此,提出了高温合金薄壁盘复杂零件加工变形控制方法。分析零件加工过程中产生的变形因素,包括夹装方式、刀具性能参数、工件自身因素、机床定位精度不够以及温度控制不佳等;确立所有工序历史误差源集合,生成误差传递矩阵,构建变形误差源诊断模型;针对不同误差源,提出针对性控制方法,通过最小二乘多项式拟合算法计算让刀误差,并对其补偿;通过有限元分析法建立工件几何模型,设立刚度控制函数,弥补工件自身缺陷;针对机床定位精度和温度分别设计控制函数,实现零件加工变形的综合控制。实验结果表明,所提方法明显减少了零件加工变形现象,保证了切削力平稳,提高了零件质量。  相似文献   

4.
铝合金薄壁件数控铣削加工变形试验与分析   总被引:1,自引:0,他引:1  
薄壁工件刚度差,在数控加工过程中在切削力的作用下极易产生加工变形,影响工件加工精度和成本。在THA5656立式加工中心上对铝合金材料LY12CZ方形直侧壁工件变形进行了试验研究,并进行误差分析。通过正交试验,研究薄壁件在铣削精加工过程中各个切削用量情况下工件的变形情况,为提高生产率和进一步控制加工变形和验证加工过程计算机仿真模型提供依据。  相似文献   

5.
This paper presents a theoretical model by which cutting forces and machining error in ball end milling of curved surfaces can be predicted. The actual trochoidal paths of the cutting edges are considered in the evaluation of the chip geometry. The cutting forces are evaluated based on the theory of oblique cutting. The machining errors resulting from force induced tool deflections are calculated at various parts of the machined surface. The influences of various cutting conditions, cutting styles and cutting modes on cutting forces and machining error are investigated. The results of this study show that in contouring, the cutting force component which influences the machining error decreases with increase in milling position angle; while in ramping, the two force components which influence machining error are hardly affected by the milling position angle. It is further seen that in contouring, down cross-feed yields higher accuracy than up cross-feed, while in ramping, right cross-feed yields higher accuracy than left cross-feed. The machining error generally decreases with increase in milling position angle.  相似文献   

6.
陈长远 《广西机械》2014,(1):147-148
在使用车床加工薄壁零件时,由于薄壁零件刚性差,加工内孔时容易引起变形,影响零件的加工精度,是车削加工中的难题.结合多年工作经验,总结出通过掌握薄壁零件的安装和夹紧,从而减少加工中的变形;选择合理的切削用量、刀具的切削角度和几何参数以及选用适合的切削液,大大提高了薄壁零件加工的质量.  相似文献   

7.
薄壁件加工变形控制快速仿真平台开发   总被引:1,自引:0,他引:1  
为控制薄壁件装夹变形和加工变形,建立了集装夹优化、加工变形预测、切削参数优化及误差补偿功能为一体的快速仿真平台.在平台实现中,装夹方案的优化采用基于形位公差控制的方法,通过多种装夹方案的比较,确定优化方案.加工变形预测时考虑了前-层变形对后-层切削深度的影响,并使切削力和加工变形达到动态平衡.为获得优化切削参数,建立了以变形控制为目标的优化模型.采用有限元法计算加工变形,采用遗传算法求解优化模型.为解得优化补偿量,仿真时考虑了变形与力的耦合效应.完成了基于ABAQUS的快速仿真平台开发.以镜座零件为例进行仿真,求得了优化的装夹方案和切削参数,验证了平台的可行性.  相似文献   

8.
针对最小相位及非最小相位受控系统,分别提出了相应算法,根据系统输出位置信号及输入的控制力信号,辨识出动态切削力信息。不使用测力传感器,从而消除了附加测力传感器所产生的不利因素,为深入研究数控非圆车削加工特性及动态切削力误差补偿提供了一种新手段。  相似文献   

9.
Currently, simultaneously ensuring the machining accuracy and efficiency of thin-walled structures especially high performance parts still remains a challenge. Existing compensating methods are mainly focusing on 3-aixs machining, which sometimes only take one given point as the compensative point at each given cutter location. This paper presents a redesigned surface based machining strategy for peripheral milling of thin-walled parts. Based on an improved cutting force/heat model and finite element method(FEM) simulation environment, a deflection error prediction model, which takes sequence of cutter contact lines as compensation targets, is established. And an iterative algorithm is presented to determine feasible cutter axis positions. The final redesigned surface is subsequently generated by skinning all discrete cutter axis vectors after compensating by using the proposed algorithm. The proposed machining strategy incorporates the thermo-mechanical coupled effect in deflection prediction, and is also validated with flank milling experiment by using five-axis machine tool. At the same time, the deformation error is detected by using three-coordinate measuring machine. Error prediction values and experimental results indicate that they have a good consistency and the proposed approach is able to significantly reduce the dimension error under the same machining conditions compared with conventional methods. The proposed machining strategy has potential in high-efficiency precision machining of thin-walled parts.  相似文献   

10.
铣削加工中铣削力是导致加工变形的直接原因,而航空薄壁件加工中,加工变形是加工误差产生的主要因素。通过有限元法对航空薄壁件的铣削过程进行三维仿真模拟,揭示了切削深度、切削速度以及摩擦因素对切削力的影响。  相似文献   

11.
复杂曲面模具加工系统综合刚度场建模与分析*   总被引:1,自引:0,他引:1  
在加工汽车覆盖件模具复杂曲面时,机床-刀具刚度、刀具位姿变化、模具型面变化都会影响加工系统综合刚度,进而影响模具加工精度。以四轴数控加工中心为例,针对模具曲面特征设置相应采样点,依据多体小变形理论,通过点传递矩阵、雅可比矩阵等完成该采样点的加工系统综合刚度建模,并引入了力椭球。在刀具不同的空间姿态下,通过力椭球分析了机床横梁、刀柄、刀具、模具曲面特征等对加工系统综合刚度性能的影响,揭示了曲面模具加工系统综合刚度的分布规律。最后通过试验证明,该理论模型可以有效地优化复杂型面模具加工工艺,减小模具的加工误差。  相似文献   

12.
乔凯  舒小平 《中国机械工程》2015,26(21):2895-2900
针对薄壁件数控加工过程中产生的力致变形误差,提出了一种将变形误差预测与误差补偿进行集成的方法。在提出高效的误差计算迭代算法基础上,采用APDL的方式开发了集迭代计算、刀具走刀、材料去除于一体的误差动态仿真程序,实现全过程加工误差的自动计算。借助UG二次开发工具UG/Open开发的应用程序实现了UG和ANSYS之间的数据通信,根据预测变形误差自动修正CAD模型,继而利用UG CAM生成考虑误差补偿因素的加工代码。研究了涉及误差离线预测及补偿的集成方法的多个关键技术。算例表明:误差预测值逼近实验值,精度可靠;集成软件能够自动生成误差补偿的加工代码,实现了误差离线预测和补偿全过程的CAD/CAE/CAM集成,集成程度高。  相似文献   

13.
某型号面齿轮为薄壁零件,插齿加工过程中受切削力极易变形。针对面齿轮的结构特点,分析了面齿轮加工过程受力情况,借助于车削力计算公式计算了插齿切削力的大小,利用有限元法计算了加工过程中的变形量,根据计算结果设计了一种面齿轮插齿专用夹具,实践证明该夹具具有结构简单,制造方便,夹紧变形小,加工时能确保满足工件加工精度要求等特点,可推广使用。  相似文献   

14.
The aim of this study is to evaluate the modelling of machining vibrations of thin-walled aluminium workpieces at high productivity rate. The use of numerical simulation is generally aimed at giving optimal cutting conditions for the precision and the surface finish needed. The proposed modelling includes all the ingredients needed for real productive machining of thin-walled parts. It has been tested with a specially designed machining test with high cutting engagement and taking into account all the phenomena involved in the dynamics of cutting. The system has been modelled using several simulation techniques. On the one hand, the milling process was modelled using a dynamic mechanistic model, with time domain simulation. On the other hand, the dynamic parameters of the system were obtained step by step by finite element analysis; thus the variation due to metal removal and the cutting edge position has been accurately taken into account. The results of the simulations were compared to those of the experiments; the discussion is based on the analysis of the cutting forces, the amplitude and the frequency of the vibrations evaluating the presence of chatter. The specific difficulties to perfect simulation of thin-walled workpiece chatter have been finely analysed.  相似文献   

15.
The static deflections of cutting tool and workpiece are the primary source for the deviation of machined components from the design specifications during end milling of thin-walled geometries. The deviations are expressed as per the Geometric Dimensioning and Tolerancing (GD&T) principles using size, form, and orientation of the features. This paper proposes a computational framework to estimate cutting force induced cylindricity error during end milling of thin-walled circular components. The framework combines computational elements such as Mechanistic force model, Finite Element Analysis (FEA) based workpiece deflection model, Cantilever beam formulation based tool deflection model, and Particle Swarm Optimization (PSO) based cylindricity estimation algorithm. It has been observed that the static deflections of a cutting tool and thin-walled component influence the cylindricity error considerably. The inevitable aspects associated with the end milling of thin-walled circular components such as concave-convex side machining and workpiece rigidity are investigated subsequently. It was observed that the cylindricity error during concave side machining is considerably smaller due to geometric configuration imparting adequate stiffness to thin-walled components. The study also demonstrated that an appropriate combination of productive cutting conditions and the component thickness could reduce cylindricity error considerably. The outcomes of the present study are substantiated by conducting a set of computational simulations and end milling experiments over a wide range of cutting conditions. The computational framework proposed in the present study can assist process planners in selecting appropriate cutting conditions to manufacture thin-walled circular components within tolerance limits specified by the designer.  相似文献   

16.
大型薄壁类零件刚性差、强度弱,在加工中极容易变形,使零件的形位误差增大,不易保证零件的加工质量。在车削过程中对薄壁零件的装夹、刀具的合理选用、切削用量的选择,分别进行了阐述,为确保加工质量,提供了理论依据。  相似文献   

17.
分析了车削薄壁筒件内孔表面时影响振动的主要因素,以切削加工中工件过渡表面的法线方向为建模方向,重点考虑车削加工中动态切削力的影响,依据振动基本理论建立了薄壁筒件动态车削过程的振动模型方程,通过对方程的数值分析探讨加工过程中的振动问题。分析结果表明:切削用量三要素对动态切削力的影响起主导作用,进而对切削振动产生较大影响。刀具主偏角对动态切削力也有一定影响,车削产生的振动与主偏角之间是非线性的关系。这些结论为薄壁筒件加工中的振动研究提供有益的参考。  相似文献   

18.
薄壁零件切削稳定性的研究现状   总被引:2,自引:0,他引:2  
汤爱君  马海龙 《工具技术》2007,41(12):11-13
高速切削技术的发展,使得薄壁结构件的高效、精密加工成为可能。但是,由于薄壁件的刚性较差,在加工过程中很容易发生变形。因此,薄壁零件的切削稳定性一直是高速切削加工领域内的一个难点。本文对于薄壁件切削稳定性的研究现状进行了讨论,并分析了薄壁件加工过程中加工变形的影响因素。  相似文献   

19.
通过金刚石刀具精密车削弱刚性超高强度铝合金零件的切削试验,获得试验的切削力数据,建立了切削力的经验模型,同时利用有限元软件分析零件的加工变形。经检测,计算变形量与实际情况基本一致。结合有限元模型和切削力经验模型优化零件的加工参数,并对零件夹紧方式进行改进,提高了加工精度。  相似文献   

20.
Industrial robots are promising cost-effective and flexible alternatives for multi-axis milling applications in machining of complex parts of light materials with lower tolerances, having freeform surfaces. As it is well-known, the poor accuracy, stiffness, and the complexity of programming are the most important limiting factors for wider adoption of robotic machining in machine shops. The paper presents the developed method for off-line compensation of machining robot tool tip static displacements as a dominant part of cutting force-induced errors. The developed method is based on modification of programmed trajectory in G-code. Off-line modification of programmed trajectory is performed according to the predicted static tool tip displacements calculated based on developed robot compliance model and cutting forces predicted by mechanistic model. The obtained experimental results show the relevance of developed method since the machining errors could be significantly reduced. This allows the desired accuracy of robot machining to converge towards nominal specifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号