首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 312 毫秒
1.
以双马来酰亚胺(BMI)、双酚A型氰酸酯(BADCy)和苯并噁嗪(BOZ)树脂为基体树脂,纳米二氧化硅(nano-SiO2)为填料,制备耐高温胶粘剂。采用非等温差示扫描量热(DSC)法、Kissinger法和Ozawa法研究了nano-SiO2/BOZ/BMI/BADCy共聚物的固化动力学过程。结果表明:当m(BOZ)∶m(BMI)∶m(BADCy)=1∶1∶2、w(nano-SiO2)=3%时,相应BOZ/BMI/BADCy胶粘剂的表观活化能(47.82 kJ/mol)低于无nano-SiO2体系(59.17 kJ/mol),并具有良好的耐高温性能;在250℃时用该胶粘剂胶接硅钢片,胶接件经250℃老化1 000 h后,其剪切强度仍保持稳定。  相似文献   

2.
研究了一种适用于模压的苯并噁嗪(BOZ)树脂,并采用凝胶渗透色谱(GPC)法、红外光谱(FT-IR)法、差示扫描量热(DSC)法和热失重分析(TGA)法等对其结构和热性能进行了分析。研究结果表明:BOZ树脂具有适宜的黏度和凝胶时间,可满足模压工艺的要求;采用Kissinger和Crane方程计算得到BOZ树脂体系固化反应的活化能为188.62 kJ/mol、反应级数为0.96;BOZ树脂体系的耐热性较好,其900℃时的残炭率为66.90%。  相似文献   

3.
以含烯丙基醚的双马来酰亚胺预聚体(AE-BMI)作为苯并噁嗪(BOZ)的改性剂,采用非等温差示扫描量热(DSC)法、Kissinger法、Crane法和β-T(升温速率-温度)外推法研究了AE-BMI/BOZ体系的固化动力学过程。结果表明:BOZ体系的凝胶温度为174.86℃、固化温度为210.95℃和后处理温度为222.44℃,AE-BMI/BOZ体系的凝胶温度为114.84℃、固化温度为199.75℃和后处理温度为227.64℃;两者的反应活化能分别为89.03、69.97 kJ/mol,反应级数分别为0.83、0.79。  相似文献   

4.
以不同种类的EP(环氧树脂)作为BOZ(苯并噁嗪)树脂的改性剂,采用非等温DSC(差示扫描量热)法研究了EP改性BOZ树脂体系的固化反应动力学;然后运用T-β(温度-升温速率)外推法、Ozawa法和Kissinger法等计算出不同改性体系的动力学参数。研究结果表明:以双酚A型EP(即E-51)作为改性剂时,相应改性体系的表观活化能更低,更有利于体系固化。  相似文献   

5.
双酚A对人体的危害极大,故双酚A型EP(环氧树脂)的应用受到极大限制。以1,4-环己烷二甲酸和丁香酚为主要原料,制备了一种不含双酚A的新型EP,并采用1H-NMR(核磁共振氢谱)法对其结构进行了表征;然后以D230(聚醚胺)作为EP的固化剂,并采用TGA(热失重分析)法和TMA(线性热膨胀系数分析)法对EP固化物的热性能进行了表征。研究结果表明:该EP固化物的热稳定性优异,其在低于300℃时几乎无失重现象;该EP固化物受热后仍具有良好的形状保持率,其在105℃时的热变形量仅为1%。  相似文献   

6.
苯并噁嗪和双马来酰亚胺共混树脂性能的研究   总被引:2,自引:0,他引:2  
将苯并噁嗪(BOZ)和双马来酰亚胺树脂(BMI)按照不同的配比进行共混固化,制备了浇铸体和玻璃纤维增强的层压板。测试结果表明,BOZ和BMI共混的树脂浇铸体线性收缩率为0.85%~0.93%,小于BMI的1.3%略高于BOZ的0.73%。浇铸体和层压板的弯曲强度均随着BOZ含量的增加而上升,并且层压板吸水率还具有不断降低的趋势;其电气绝缘性能较佳。同时该共混树脂体系具有较好的耐热性,其Tg最高达到257℃比单纯BOZ的Tg提高了近50℃。DSC结果表明BOZ/BMI树脂体系的固化反应相对二者各自固化反应向低温移动,使体系中的BMI在相对较低的温度就固化完全。  相似文献   

7.
以双酚S为原料,采用溶剂法合成了一种含砜基的苯并恶嗪(BOZ–S),并用不同长度的高性能维纶短切纤维(PVAF)为增强材料,通过预浸料模压成型制备出BOZ–S改性酚醛树脂(PF)模塑料。利用傅里叶变换红外光谱仪、核磁共振仪、差示扫描量热仪以及扫描电子显微镜等分别对BOZ–S的单体结构、PF/BOZ–S改性体系的固化特性、改性PF模塑料的力学性能、热性能以及冲击断口进行了分析研究。结果表明,成功合成出了预期结构的BOZ–S,且固化时存在两种放热反应;改性树脂体系的各项性能与纯PF相比均有明显提升,且纤维的长度越长,模塑料的力学性能提升越大,其中PF/BOZ–S质量比为80/20、纤维长度为36 mm时,体系的综合性能最佳,冲击强度和弯曲强度分别为88.4 k J/m~2和175.9 MPa,弯曲弹性模量达到8.8 GPa,马丁耐热温度为164.3℃。  相似文献   

8.
联苯酚醛环氧树脂固化动力学及热性能研究   总被引:1,自引:0,他引:1  
以4,4'-二氨基二苯砜(DDS)为固化剂,采用非等温示差扫描量热法(DSC)研究了联苯酚醛环氧树脂(BPNE)的固化动力学。通过外推法确定了体系的固化工艺。采用Kissinger、Ozawa法计算出固化体系的表观活化能,根据Crane理论计算得到该体系的固化反应级数。采用DSC,热重分析(TGA)研究了固化物的耐热性。结果表明:BPNE的固化工艺为160℃/2h+200℃/2h+230℃/2h;固化反应的活化能约为61.86kJ/mol,指前因子为5.27×105min-1,反应级数为1.1;玻璃化转变温度(Tg)为167℃,其10%热失重温度为398.1℃,800℃残炭率为29.37%,与双酚A环氧树脂/DDS固化物相比,分别提高了22℃,11.71%。  相似文献   

9.
微波固化环氧树脂/氨基二苯醚树脂的耐热性能研究   总被引:5,自引:0,他引:5  
以二苯醚树脂(DPO)为原料,合成了一类新型耐高温树脂一氨基二苯醚树脂(ANDPO),用作双酚A环氧树脂(EP)的固化剂,以提高环氧树脂的耐热性。采用微波技术固化EP/ANDPO体系。通过FTIR定量研究了EP/ANDPO体系的反应程度,利用差示扫描量热法(DSC)和热重分析法(TG)研究了固化体系的耐热性能,并与热固化进行了比较。结果表明:微波固化显著提高了体系的固化速度和热性能。体系转化率为95%时,400W的微波只需10min即可完成固化,而热固化需要在150℃固化240min。微波固化产物的Tg、表观分解温度TA、温度指数Tzg分别为172.6℃、322℃和200℃。而热固化产品的Tg、TA、Tzg分别为163.5℃、306℃和189℃。两种固化方式所得产品的TA、Tzg均高于目前所用的芳香族胺类固化剂,显著提高了环氧树脂的耐热性能。  相似文献   

10.
为提高双酚F环氧树脂的综合性能,以双酚F、间苯二酚与环氧氯丙烷反应制得双酚F/间苯二酚共聚型环氧树脂。通过差示扫描量热法(DSC)研究了2-乙基-4-甲基咪唑对双氰胺-双酚F/间苯二酚共聚型环氧树脂体系固化反应的促进作用,并系统地探讨了固化体系及固化条件对固化物性能的影响。结果显示,其最佳固化工艺条件是:间苯二酚与双酚F质量比为20∶80,双氰胺质量分数为6%,2-乙基-4-甲基咪唑质量分数为4%,固化温度为110℃,固化时间为3 h。  相似文献   

11.
Three kinds of inherent flame-retardant epoxy resin (EP) composites with 20 wt % benzoxazine (BOZ) were prepared with different curing processes with 2-methyl-1H-imidazole (MI) as a catalyst or/and changes in the curing temperature. The effects of the curing process on the flame retardancy, thermal stability, mechanical properties, and curing behaviors were investigated. The composite with added MI cured at low temperature (EBM–LT) had the best properties. It possessed a 35.3% limiting oxygen index and achieved a UL 94 V-0 rating. Thermogravimetric analysis indicated that EBM–LT had the best thermal stability among the three kinds of EP composites with BOZ. The EP composites with BOZ mainly displayed a condensed-phase flame-retardant mechanism. The mechanical properties improvement was attributed to the formation of a heterogeneous network. Differential scanning calorimetry indicated that MI reacted with EP and catalyzed the homopolymerization of BOZ, and EP reacted with BOZ. Fourier transform infrared spectroscopy analysis indicated that curing at lower temperature caused the formation of more homopolymers of BOZ. The relationship of the curing process, network structure, and properties of EP composites with BOZ was established; this could help with the design of high-performance EP composites with BOZ. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47847.  相似文献   

12.
Hyperbranched polyborate (HBPB) is a novel polymer with highly branched structures, plenty of functional end groups, and excellent thermal resistance, which could be used as an effective modifier for thermoset resin to greatly improve the thermal resistance and toughness of the resin, simultaneously. With the assistance of benzoxazine (BOZ) resin which has low viscosity, high thermal resistance, and no by‐product release upon curing, modification effects of HBPB on the thermal resistance and toughness of phenolic resin (PR) can be adequately realized. The optimal combination of HBPB and BOZ modified PR (PR‐BOZ‐HBPB) is obtained by the orthogonal test. The PR‐BOZ‐HBPB blend prepared with the optimal combination (90 portion of PR, 10 portion of BOZ, and 5 portion of HBPB) has a char yield up to 67.4%; meanwhile, flexural strength, interlaminar shear strength, flexural modulus of this glass/PR‐BOZ‐HBPB composite are higher than those of glass/PR composite by 17.6%, 23.3%, and 9.6%, respectively. The novel thermoset resin, PR‐BOZ‐HBPB blend, which consists of good processability, great thermal and mechanical properties, is obtained. POLYM. COMPOS., 33:1960–1968, 2012. © 2012 Society of Plastics Engineers  相似文献   

13.
分别加入羧基加成型的双噁唑啉(BOZ)和羟基加成型的均苯四甲酸酐(PMDA)为扩链剂,考察了反应挤出前后PET特性黏度([η])和羧基值的变化情况。实验结果表明:BOZ的扩链效果不明显;PMDA能较大程度地提高PET的[η],但产品羧基值较高;BOZ和PMDA联用可得到高[η]低羧基值的产品,扩链效果最佳。当挤出机工艺条件为:反应段温度260℃、螺杆转速45 r/min、反应段压力1 kPa、BOZ和PMDA质量分数均为0.2%时,可得到[η]为0.90 dL/g,羧基值为25 mol/t的PET产品。  相似文献   

14.
陈杨  史铁钧  钱莹  何涛 《化工学报》2017,68(6):2604-2610
以乙醇胺、硼酸为原料合成硼酸乙醇胺酯(BAE),再用所得硼酸乙醇胺酯与多聚甲醛、苯酚反应,合成含硼苯并噁嗪(BAE-BOZ)。将所得BAE-BOZ高温固化,BAE-BOZ和环氧树脂E-51按照不同的质量比进行熔融共混,并经高温固化。采用FT-IR,1H NMR 和13C NMR等分析了BAE-BOZ的化学结构,证明了产物为目标产物;采用DSC对BAE-BOZ的固化特性进行研究;采用TG 分析了含硼乙醇胺型苯并噁嗪poly(BAE-BOZ)和BAE-BOZ/E-51共聚物的热稳定性。结果表明:BAE-BOZ在218℃出现了固化峰;BAE-BOZ的硼含量达到8.67%,在N2条件下,poly(BAE-BOZ)的热分解温度为302℃,在426℃时热分解速率最快,800℃的残炭率为58.08%,与未经硼改性的乙醇胺型苯并噁嗪(E-BOZ)相比,热分解温度提高40℃,残炭率提高了16.28%;BAE-BOZ/E-51共聚物的热分解温度达到343℃,热性能得到进一步提高。  相似文献   

15.
以双组分环氧树脂(EP)为基体树脂、4,4′-二氨基二苯砜(DDS)改性双马来酰亚胺(BMI)为固化剂,采用共混法制备出一种汽车同步器用耐高温结构胶。采用差示扫描量热(DSC)法、热重分析(TGA)法和动态力学分析(DMA)法考察了不同固化工艺和不同配方对结构胶的粘接性能、耐热性能及耐冻融循环性能等影响。结果表明:当m(双组分EP)∶m(预聚体或固化剂)=1.0∶1.0以及采用阶梯升温固化工艺"150℃/1 h→180℃/2 h→200℃/1 h"时,该结构胶具有良好的粘接性能(用于碳纤维与金属间粘接时)和工艺性能,其室温剪切强度为33.9 MPa、180℃剪切强度为23.7 MPa;该结构胶可在低于180℃环境中长期使用,并完全满足汽车同步器的使用要求。  相似文献   

16.
通过差示扫描量热法对双马来酰亚胺/苯并噁嗪/石墨烯(BMI /BOZ/GNS)共聚物进行了动力学研究。通过Kissinger法和Ozawa法求得了BMI /BOZ/GNS共聚物的固化动力学参数,进而研究了GNS对BMI /BOZ共聚物力学性能的影响。结果表明,随着GNS含量的增加,BMI /BOZ/GNS树脂体系的拉伸性能先增加后减小;当GNS含量为0.15 %(质量分数,下同)时,BMI /BOZ/GNS树脂体系的力学性能最优。  相似文献   

17.
为提高厌氧胶的热性能,用二步法合成了邻甲酚醛环氧丙烯酸酯(o-CFEAR),并以该树脂为单体,不饱和笼型倍半硅氧烷(POSS)为耐高温改性剂,选择合适的氧化还原体系及其它助剂,制成耐高温厌氧胶,测定了相关性能,研究了该胶的固化动力学。结果表明,此厌氧胶剪切强度最高达15.3 MPa,在200℃、96 h时剪切强度保持率为87%左右,耐高温性能良好;固化过程的反应级数为1.084 9,表观活化能为86.86 kJ/mol。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号