首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a review of the reported research investigations that are related to the solid particle erosion behavior of polymers and polymeric composites. Attention is paid to the effects of test parameters such as erodent type, size of the erodent, impingement angle, impact velocity and stand of distance. On the erosion wear rate of polymer composites. Various predictions and models proposed by different authors to describe and quantify the erosion rate are discussed and their suitability is checked. Recent findings on the erosion response of multi-component hybrid composites are also presented. Lastly the implementation of the design of experiments and statistical techniques in making a parametric appraisal of the erosion processes of composites is discussed.  相似文献   

2.
In this paper, TiO2 was introduced into boron carbide and B4C-based ceramic composites were obtained by uniaxial hot pressing. The mechanical properties, relative density and erosion behaviour of B4C-based ceramic composites were investigated. X-ray analysis showed that the fabricated composites were composed of B4C, TiB2 and C phases. SEM technique was employed to observe the original polished surfaces and the eroded surfaces of B4C-based ceramic composites. The effect of impingement angle, impact velocity of SiC erodent particle, relative density and phase ratio on the erosion rate of B4C-based ceramic composites was determined. It was found that the erosion rate of B4C-based ceramic composites increased with increasing of impingement angle and erodent particle velocity. The relative density and phase ratio influenced the erosion rate of B4C-based ceramic composites significantly by influencing their mechanical properties.  相似文献   

3.
The present investigation reports the solid particle erosion behaviour of randomly oriented short Lantana-Camara fiber-reinforced polymer composites (LCRPCs) using silica sand particles (200 ± 50 µm) as an erodent. The erosion rates of these composites have been evaluated at different impingement angles (15°–90°) and impact velocities (48 m/s–109 m/s) with constant feed rate of erodent (1.467 ± 0.02 gm/min). Highest wear rates were investigated at impingement angles 45°. Erosive wear rates were found to have a close relationship with the impingement angle of the erodent and speed. The morphology of eroded surfaces was examined by using scanning electron microscopy (SEM). Possible erosion mechanisms were discussed.  相似文献   

4.
In recent years, a fairly good number of articles dealing in characterization of solid particle erosion of glass fiber reinforced composites are available but exhaustive study on this vital aspect leading to understand erosion phenomenon is hardly found in the literature. Therefore, in the present work, a theoretical model based on principle of conservation of particle kinetic energy is developed to determine wear rate of glass–polyester composites due to multiple impact erosion. Room temperature erosion tests are then carried out to study the effect of various control factors in an interacting environment on the erosion behavior of these composites. For this purpose, design of experiments approach utilizing Taguchi’s orthogonal arrays is adopted to test the specimens on air jet type erosion test configuration. The results indicate that erodent size, fiber loading, impingement angle and impact velocity are the significant factors in the order of their influence on wear rate. Taguchi approach enables to determine optimal parameter settings that lead to minimization of erosion rate. Artificial neural network (ANN) approach is applied to the erosive wear data to reach at acceptable predictive models. Scanning electron microscopy of the eroded surface of the composites is performed for observation of the features such as crack formation, fiber fragmentation and matrix body deformation. Finally, popular evolutionary approach known genetic algorithm (GA) is used to generalize the method of finding out optimal factor settings for minimum wear rate.  相似文献   

5.
The effect of erodent particle size on solid particle erosion of randomly oriented short glass fiber and mineral particle reinforced polyphenylene sulfide (PPS) was investigated. To examine the effect of erodent size on the erosion resistance of the PPS composite, aluminum oxide particles at three different sizes, namely, 300–425 μm, 150–212 μm, and 45–75 μm, were used. The erosion tests were performed at six different contact angles of 15°, 30°, 45°, 60°, 75°, and 90°, respectively. The results showed a strong relationship between the erodent particle size and erosion rates of PPS composite. Maximum erosion rate for the erodent particles with sizes of 45–75 μm and 150–212 μm occurred at contact angle of 30°, on the other hand maximum erosion rate for particles having 300–425 μm size occurred between 45° and 60°. The morphologies of eroded surfaces were characterized by the scanning electron microscopy (SEM). Possible erosion mechanisms were discussed. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

6.
本文研究了酚醛树脂PE和用酚醛树脂作基体的FRP的泥浆磨蚀。用泥土作填料的基体和玻璃纤维制成的最普通的复合材料表现出非常低的耐磨蚀性,并且由实验得出,玻璃纤维方向和微粒冲击方向形成的角度对损伤影响极大。由此提出,研究讨论填料或增强材料对磨蚀损伤影响的重要性。  相似文献   

7.
Polypropylene‐based needle‐punched nonwoven reinforced epoxy composites have been fabricated and were evaluated for their thermomechanical response and dry erosion performance. The erosive wear investigations were carried out using silica sand particles as erodent with varying impact velocity, angles of impingement, fiber content, and stand‐off‐distance as the operating variables. Design of experiments (DoE) approach‐based Taguchi analysis was carried out to establish the interdependence of operating parameters and erosion rate. Impingement angle and impact velocity have been found to be the most significant determinants of erosive wear performance of such nonwoven reinforced composites. The composites were also observed to be appreciably resistant to impact content and indentations in addition to exhibiting the absence of any storage‐modulus decay till 60°C accompanied with a nominal increase in the primary transition temperature as revealed from loss‐tangent peaks. The composite with 30 wt % and 40 wt % of nonwoven materials have shown the highest and lowest erosion rates, respectively. The morphology of eroded surfaces was examined by using scanning electron microscopy (SEM) and their possible erosion mechanisms are discussed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
Magnesium with 10% SiC is identified to be a suitable composition for wear resistance application. To improve the utilization of this composite for various industrial applications, erosion study has been conducted by using air jet erosion tester with varied machining conditions. The composite is prepared by a conventional stir casting process. Alumina is taken as an erodent particle. Impact angle, erosion velocity, and discharge rate are taken as the governing parameters of erosion rate. Lower impact angle and high erodent velocity yield to have a high erosion rate of 0.022 g/min with the least surface finish of 1.48 μm. Erosion velocity is found to have a significant effect of 59% over the other considered parameters. Further, the analysis of the surface profile parameters likely; Ssk, Sku, Sp, Sv, and Sa on the machined surface reveals the mechanism of the material removal and also, the surface defects are analyzed by using SEM image.  相似文献   

9.
B4C/SiCw陶瓷喷砂嘴的制备及其冲蚀磨损机理研究   总被引:6,自引:0,他引:6  
采用热压烧结工艺制备了B4C/SiCw陶瓷喷砂嘴,研究了SiC晶须的含量对B4C/SiCw陶瓷材料性能的影响.以SiC和Al2O3磨料对B4C/SiCw陶瓷喷砂嘴进行冲蚀磨损试验,研究不同磨料对B4C/SiCw陶瓷喷砂嘴冲蚀磨损的影响,分析了其冲蚀磨损机理.结果表明:B4C/SiCw陶瓷喷砂嘴的冲蚀磨损机理主要表现为脆性断裂和磨料粒子对喷嘴的切入所造成的微观切削作用.磨料的硬度和粒度对陶瓷喷嘴的磨损有重要的影响,磨料的硬度和粒度越大,陶瓷喷嘴的磨损速度加快.  相似文献   

10.
Atmospheric plasma sprayed (APS) zirconium oxide based coatings are used widely in aero engine components for providing thermal insulation, improving the corrosion and oxidation resistance. Despite its wide spread industrial use, little is known about the basic erosion behaviour and the mechanisms by which such coatings erode. In this paper, the erosive wear behaviours of Yttria Stabilized Zirconia (YSZ) coatings; Lanthanum Zirconate (LZ) coatings and Inconel 738 base material (BM) were studied and compared under air jet erosion conditions with corundum particles as erodent material. The erosion behaviour was studied with respect to the different porosity volume percentages of the coatings and the changes in velocity of erodent, impact angle of erodent and erodent particle flux. It was found that in solid particle erosion, the wear resistances of YSZ and LZ coatings were the best at their lowest porosity volume and it decreased with the increase in the percentage volume of porosity. There was a linear increase in the wear resistance with the increase in hardness. Further, relationships among the erosion parameters with respect to erosive wear loss were derived by using the response surface methodology and the erosion mechanisms were discussed adequately.  相似文献   

11.
Dense silicon carbide (SiC) ceramics were prepared with 0, 10, 30 or 50 wt% WC particles by hot pressing powder mixtures of SiC, WC and oxide additives at 1800 °C for 1 h under a pressure of 40 MPa in an Ar atmosphere. Effects of alumina or SiC erodent particles and the WC content on the erosion performance of sintered SiC–WC composites were assessed. Microstructures of the sintered composites consisted of WC particles distributed in the equi-axed grain structure of SiC. Fracture surfaces showed a mixed mode of fracture, with a large extent of transgranular fracture observed in SiC ceramics prepared with 30 wt% WC. Crack bridging by WC enhanced toughening of the SiC ceramics. A maximum fracture toughness of 6.7 MPa*m1/2 was observed for the SiC ceramics with 50 wt% WC, whereas a high hardness of 26 GPa was obtained for the SiC ceramics with 30 wt% WC. When eroded at normal incidence, two orders of magnitude less erosion occurred when SiC–WC composites were eroded by alumina particles than that eroded by SiC particles. The erosion rate of the composites increased with increasing angle of SiC particle impingement from 30° to 90°, and decreased with WC reinforcement up to 30 wt%. A minimum erosion wear rate of 6.6 mm3/kg was obtained for SiC–30 wt% WC composites. Effects of mechanical properties and microstructure on erosion of the sintered SiC–WC composites are discussed, and the dominant wear mechanisms are also elucidated.  相似文献   

12.
This article presents the slurry erosive wear behavior of single and multilayer coatings on granite powder reinforced aluminum alloy composites for hydro-turbine blade material. The composites were fabricated by stir casting technique with different weight fraction (0, 2, 4, 6wt.%) of granite powder in 1050 aluminum alloy. In this study, the slurry jet erosive performance of uncoated, single layer and multilayer coating granite powder filled alloy composites in a slurry jet wear test was conducted for four different operating parameters such as filler content (0-6wt.%), impact velocity (10-25 m/s), impingement angle (30-75 0) and erodent discharge (160-280 gm), respectively. The slurry erosion rate was a maximum at 0wt.% granite powder reinforcement in uncoated, single layer and multilayer coating samples such as: 0.0203 gm/kg, 0.00981 gm/kg and 0.00756 gm/kg, respectively at impact velocity of 25 m/sec. Taguchi’s orthogonal array (L 16) was applied to study the experimental results of the uncoated and coated alloy composites. A correlation was derived from the results of the Taguchi experimental design and a proposed predictive equation for estimation of slurry erosion rate of these composites. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were conducted to analyze the topography of the eroded surface of uncoated and coated granite powder reinforced aluminum alloy composites.  相似文献   

13.
Sand erosion behavior of freestanding diamond films prepared by high power dc arcjet operating at gas recycling mode was investigated by a laboratory designed blast type apparatus. Four different erodent: glass bids, SiO2, Al2O3, and SiC were used. The speed of the erodent particles was measured by the double disk method. It was found that the erosion behavior for the as-grown and the polished diamond films was quite different. At the initial stage, the erosion rate was rather high for the as-grown diamond film, which rapidly decreased with the increase in erosion time, and eventually reached the steady state erosion stage on prolonged erosion. Whilst for the polished diamond film, the erosion rate was quite low at the initial stage, which rapidly increased with the increase in erosion time, and finally reached the steady state erosion stage after a long erosion time. Surface damage was investigated by SEM observations and Raman spectroscopy. Possible mechanism responsible for the difference in erosion behavior was briefly explained. Comparison of the erosion behavior of freestanding diamond films was also made with the other commonly used IR window materials (Ge, MgF2, MgAl2O4, ZnS and quartz glass). Detailed results were discussed.  相似文献   

14.
陶瓷材料冲蚀磨损的研究   总被引:5,自引:0,他引:5  
冲蚀磨损是现代工业生产中常见的一种磨损磨损形式,陶瓷材料由于其所具有的一些固有特性而在冲蚀环境下的应用越来越广。本文探讨了影响陶瓷材料冲蚀行为的因素。讨论了环境参数(如冲角,冲蚀速度,冲蚀时间和温度),磨粒性能(如硬度,粒度和形状),靶材性能(如硬度,断裂韧性和显微组织结构)等对冲蚀的影响规律。  相似文献   

15.
Plain weave carbon fabric (CF) reinforced Polyetherimide (PEI) composites, hereafter referred to as CF‐PEI composites, containing 40, 55, 65, 75, and 85 vol% of CF were developed using impregnation technique and compression moulding. An additional CF‐PEI composite containing 52 vol% of CF was also fabricated using film technique and compression moulding. These composites were developed in order to explore the effect of fabric content and processing technique on strength properties and erosive wear performance of PEI. These six composites along with unfilled PEI were evaluated for their physical and mechanical properties. The erosive wear performance of these materials was evaluated using angular silica particles as erodent at an impingement angle of 30°. It was observed that fabric content strongly influenced the strength properties as well as erosion resistance. Strength performance, however, did not linearly increase with increase in fabric content. Lowest (40%) and highest (85%) amount of fabric proved least effective in this regard. Similar observations were observed in the case of wear resistance (WR). CF in the range of 55–75 vol% proved optimum for strength properties and wear performance barring PEI, which showed highest WR. Between the two processing techniques, impregnation technique (I) proved far superior to the film technique (F) in both strength and wear performance. A fairly good correlation was observed between erosion resistance and a product of interlaminar shear strength, resilience, and elongation. SEM studies on worn surfaces supported the wear behavior. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

16.
以平均粒径分别为0.28 mm、0.40 mm、0.52 mm、0.80 mm的棕刚玉为磨料对I等高铝砖进行常温垂直气固冲蚀磨损试验,对磨料和靶材冲后表面进行扫描电镜显微结构分析,在宽粒径范围内研究磨料粒径对靶材耐磨性与冲蚀机制的影响.借助ANSYS/LS-NYNA软件建立多粒子冲蚀模型,分析不同磨料粒径下的冲蚀行为.结果表明:I等高铝砖出现"粒径效应",临界粒径0.40 mm;靶材最大等效应力随磨料粒径的增加而增加;平均粒径≥0.40 mm时磨料发生破碎,0.28 mm、0.40 mm、0.80 mm磨料冲蚀下靶材的主要冲蚀机制分别是基质和骨料微切削、基质和骨料断裂、缺陷处断裂.  相似文献   

17.
In spite of significant research done in the field of particulate filled polymeric composites, reports on polymers filled with glass microspheres have been extremely rare. In view of this, the present work includes the processing, characterization, and erosion wear response of a new class of epoxy composites filled with different proportions of borosilicate glass microspheres. Hand lay‐up technique is used for making these composites in a laboratory scale. Various physical and mechanical properties are evaluated under controlled laboratory conditions. It is found that while the tensile and flexural strength are marginally influenced, the impact strength is improved quite significantly. Besides, multifold enhancement in composite microhardness is also noticed. Erosion trials are made as per the experimental design based on Taguchi's L16 orthogonal array. Parametric appraisal of erosion process is made and influential parameters affecting the wear rate predominantly are identified. The results indicate that erosion wear rate of these composites is influenced more significantly by impact velocity and filler content respectively compared to others factors. The eroded composite samples are studied using scanning electron microscopy and possible wear mechanisms are discussed. POLYM. COMPOS., 36:1685–1692, 2015. © 2014 Society of Plastics Engineers  相似文献   

18.
The influence of erodent particle types on solid particle erosion of randomly oriented short glass fiber and mineral particle reinforced polyphenylene sulphide (PPS) was investigated. The solid particle erosion studies were carried out using low speed solid particle erosion test rig with 150 to 212‐μm brown fused aluminum oxide (Al2O3), 150 to 200‐μm silica sand and 150 to 250‐μm glass bead. Glass bead eroding particles appear spherical in shape whereas aluminum oxide and silica sand eroding particles have sharp and angular edges. The erosion tests were conducted at six different contact angles of 15, 30, 45, 60, 75, and 90°, respectively. The results showed a strong dependence of the eroding particle types on the erosive wear behavior of PPS composite. The peak erosion rate occurred at 45° contact angle for silica sand eroding particles while the peak erosion rate occurred at 30° contact angle for aluminum oxide and glass bead particles. The morphologies of eroded surfaces were characterized by the scanning electron microscopy. In case of aluminum oxide and silica sand, the erosive wear mechanism occurs firstly by the erosion of matrix, followed by the fracture of un‐supported fibers and their detachment; however, the erosive wear mechanism occurs different for glass bead particles. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

19.
20.
Erosion Response of Highly Anisotropic Silicon Nitride   总被引:3,自引:0,他引:3  
The erosion rates and impact damage of two sintered Si3N4 materials with identical compositions but different microstructures were determined using a gas-blast-type erosion rig. The erodent particles used were SiC grits and the impact angles investigated were 30° and 90°. It was found that the erosion behavior of the two materials could not be related to their mechanical properties, such as hardness and fracture toughness as predicted by the theoretical erosion models. In fact, a close relationship was identified between their microstructure and the erosion mechanism. Microstructures containing evenly dispersed and uniaxially oriented reinforcing whiskers promoted grain-pullout, while the randomly oriented elongated grains hindered it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号