首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Acta Materialia》2002,50(9):2381-2393
The influence of microstructure and load ratio (R) on the fatigue crack growth (FCG) characteristics of WC–Co cemented carbides are studied. In doing so, five hardmetal grades with different combinations of binder content and carbide grain size are investigated. Attempting to rationalize microstructural effects, key two-phase parameters, i.e. binder thickness and carbide contiguity, are used. On the other hand, the effect of load ratio is evaluated from the FCG behavior measured under R values of 0.1, 0.4 and 0.7. Experimental results indicate that: (1) WC–Co cemented carbides are markedly sensitive to fatigue; and (2) their FCG rates exhibit an extremely large dependence on Kmax. Furthermore, both fatigue sensitivity and relative prevalence of Kmax over ΔK, as the controlling fatigue mechanics parameter, are found to be significantly dependent upon microstructure. As mean binder free path increases, predominance of static over cyclic failure modes diminishes and a transition from a ceramic-like FCG behavior to a metallic-like one occurs (conversely in relation to contiguity). Consequently, the trade-off between fracture toughness and FCG resistance becomes more pronounced with increasing binder content and carbide grain size. The observed behavior is attributed to the effective low ductility of the constrained binder and its compromising role as the toughening and fatigue-susceptible agent in hardmetals, the latter on the basis that cyclic loading degrades or inhibits toughening mechanisms operative under monotonic loading, i.e. crack bridging and constrained plastic stretching.  相似文献   

2.
A detailed investigation on the relationships between phase assemblage and fracture and fatigue characteristics of Mg-PSZ has been conducted. In doing so, three completely different microstructural conditions were first attained through different thermal treatments and then their flexural strength, fracture toughness and crack growth resistance and fatigue crack growth (FCG) behaviour were evaluated. The obtained results are discussed considering the interplay between microstructural features and dominant crack-microstructure interaction and its influence on the operation of given toughening and mechanical fatigue mechanisms for each phase assemblage studied. FCG resistance, under both sustained and cyclic loading, is found to be closely related to the corresponding fracture toughness of each phase assemblage. However, real mechanical fatigue effects are estimated to be, once they are rationalized with respect to particular environmental-assisted cracking behaviours, an exclusive function of crack path type. Finally, different cyclic fatigue mechanisms for Mg-PSZ are pinpointed depending upon the prevalent transgranular or intergranular FCG morphology.  相似文献   

3.
The correlation between the damage induced under cyclic contact fatigue and their electrochemical behavior (anodic polarization curves) for different WC-Co-based cemented carbides grades was investigated at the macrometric and micrometric length scale. Under both, dry (i.e. air atmosphere) and wet (cutting lubricant fluid) conditions, the crack path propagates near the carbide/metallic binder interface, resulting in tortuous cracks of several micrometers. Despite the alkaline conditions imposed by the cutting fluid (pH 9.2), the cobalt binder is preferentially dissolved, and the carbide-skeleton keeps stable. The presence of cutting fluid in the contact fatigue zone changes the morphology of the cracks due to the partial dissolution of the binder phase. The addition of chromium to the WC-Co composition enhances corrosion resistance of the metallic binder phase resulting in reduced damage of the cemented carbides in environmental assisted cyclic contact fatigue conditions.  相似文献   

4.
《Acta Materialia》2003,51(1):1-15
The mode-I crack growth behavior of geometrically similar edge-cracked single crystal specimens of varying size subject to both monotonic and cyclic axial loading is analyzed using discrete dislocation dynamics. Plastic deformation is modeled through the motion of edge dislocations in an elastic solid with the lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and dislocation annihilation incorporated through a set of constitutive rules. The fracture properties are specified through an irreversible cohesive relation. Under monotonic loading conditions, with the applied stress below the yield strength of the uncracked specimen, the initiation of crack growth is found to be governed by the mode-I stress intensity factor, calculated from the applied stress, with the value of Kinit decreasing slightly with crack size due to the reduction in shielding associated with dislocations near a free surface. Under cyclic loading, the fatigue threshold is ΔK-governed for sufficiently long cracks. Below a critical crack size the value of ΔKI at the fatigue threshold is found to decrease substantially with crack size and progressive cyclic crack growth occurs even when Kmax is less than that required for the initiation of crack crack growth in an elastic solid. The reduction in the fatigue threshold with crack size is associated with a progressive increase in internal stress under cyclic loading. However, for sufficiently small cracks, the dislocation structure generated is sparse and the internal stresses and plastic dissipation associated with this structure alone are not sufficient to drive fatigue crack growth.  相似文献   

5.
The cyclic compression behavior of a Cu45Zr45Al5Ag5BMG was investigated in order to elucidate the damage initiation and growth mechanisms. The present Cu45Zr45Al5Ag5 BMG was found to have a fatigue-endurance limit of 1418 MPa and fatigue ratio of 0.77. Fracture under cyclic compression occurred in a pure shear mode. The fracture surface forms an angle of 41° with respect to the loading axis. This angle was similar to the monotonic compressive fracture angle for the present BMG. The cyclic compression fracture surface displays a morphology nearly identical to the monotonic compression fracture surface. In addition to many shear bands and cracks, areas of “chipping” were commonly found on the outside surfaces of the fatigue specimens. An attempt was made to measure crack growth rates, and two types of crack growth behavior were found. With the first type, the growth rate decreased with cycles due to the decrease in the driving force for crack propagation. With the second type, the crack growth rate increased with cycles after chipped areas developed. The fatigue deformation process for BMGs under cyclic compression was carefully studied and rationalized.  相似文献   

6.
The mechanism of the fatigue-crack growth is essential to understand the fatigue and fracture behavior of bulk metallic glasses (BMGs) and is thus critical to predict the service lifetime of BMGs as potential engineering structural materials. Experiments indicate that fracture under compressive loading exhibits distinct behaviors different from that under tensile loading. A typical compression failure may initiate from micro porosity where cracks propagate in a direction generally parallel to the loading axis. Micromechanical stress analysis shows that pores cause axial tensile microcracks emanating from the pore. A simplified computational model based on the linear elastic fracture mechanics (LEFM) is proposed to investigate crack initiation and subsequent propagation under compressive load, where the effect of crack closure on mode-I fracture is considered. The stable crack length is characterized by a dimensionless fracture-mechanics quantity required to attain the associated crack length. The behavior of crack growth is examined based on the stress-intensity-factor (SIF) calculation, and its dependence on the loading and lateral confinement conditions is discussed.  相似文献   

7.
In this study, high-cycle fatigue tests were conducted on specimens machined from 50 sequentially cast instrument panels made from high-pressure die-cast (HPDC) AM60B magnesium alloy. The fatigue life data were described by a two-parameter Weibull model. SEM analyses on the fracture surfaces showed the initiation of the fatigue cracks occurred exclusively at casting pores close to the machined surfaces. The dependence of local maximum plastic shear strain range on casting pore features and loading conditions was studied quantitatively by finite element simulation including varying the pore size, geometry and spacing, proximity to the free surface, as well as loading ratios. A constitutive plasticity model, the classic Ohno–Wang's kinematic hardening rule, was employed to simulate the isothermal monotonic and cyclic behaviour of magnesium AM60B alloy under uniaxial loading. The simulation results illuminated the microstructure–property relations for fatigue crack incubation and the resultant scatter in fatigue life.  相似文献   

8.
The role of adhesion in contact fatigue   总被引:2,自引:0,他引:2  
By incorporating the effects of interfacial adhesion in the mechanics of rounded contact between two bodies, a new approach is proposed for the quantitative analysis of a wide variety of contact fatigue situations involving cyclic normal, tangential or torsional loading. In this method, conditions of “strong” and “weak” adhesion are identified by relating contact mechanics and fracture mechanics theories. Invoking the notion that for strong and weak adhesive contact, a square-root stress singularity exists at the rounded contact edge or at the stick–slip boundary, respectively, mode I, II or III stress intensity factors are obtained for normal, sliding and torsional contact loading, accordingly. A comparison of the cyclic variations in local stress intensity factors with the threshold stress intensity factor range for the onset of fatigue crack growth then provides critical conditions for crack initiation in contact fatigue. It is shown that the location of crack initiation within the contact area and the initial direction of crack growth from the contact surface into the substrate can be quantitatively determined by this approach. This method obviates the need for the assumption of an artifical length scale, i.e. the initial crack size, in the use of known fracture mechanics concepts for the analyses of complex contact fatigue situations involving rounded contact edges. Predictions of the present approach are compared with a wide variety of experimental observations.  相似文献   

9.
Abstract

Current fracture mechanics methods for fatigue assessment, including those that consider thresholds for crack propagation, are based on long crack behaviour. The present work is concerned with an attempt to predict the fatigue strength of welded joints using a fracture mechanics approach that takes into account the fatigue behaviour of short cracks. The methodology estimates the fatigue crack propagation rate as a function of the difference between the applied driving force and the material threshold for crack propagation, which is a function of crack length. The fatigue strength of butt welded specimens stressed transversely was analysed. Experimental results from the literature were used for comparison. Estimations are obtained by using only the fatigue limit and the fatigue propagation threshold for long cracks, and the applied stress distribution along the crack path obtained from simple finite element models. The influence of plate thickness, initial crack length, and reinforcement angle on fatigue strength of butt welded joints was analysed. Results show good agreement with experimental trends.  相似文献   

10.
The contact fatigue behavior of three microstructurally distinct tool steels coated with a physical vapor deposited TiN film is studied. Substrate microstructural differences come from variations in either chemical composition or processing route. Experimental procedure is based on determining critical applied loads and pressures, under both monotonic and cyclic spherical indentation loading conditions, for emergence and evolution of distinct damage modes at the coating surface: circumferential cracking, cohesive spallation and interfacial decohesion. Experimental results indicate that all coating/substrate systems evaluated are susceptible to mechanical degradation associated with repetitive contact loading. This is clearly discerned from the fact that some damage mechanisms, such as cohesive spallation at the coating and adhesion failure at the interface, are exclusively observed under cyclic loading. Substrate microstructure effects are evidenced by consideration of coating detachment as the critical damage mechanism. In this regard, crack nucleation resistance of primary carbides is pointed out as the main reason for the distinct response against decohesion observed under cyclic contact loads. Hence, finer and tougher, as well as less irregular and more homogeneously distributed primary carbides are pointed out as key microstructural features for enhancing contact fatigue strength of coated cold-work tool steels.  相似文献   

11.
This paper analyzes the tensile fatigue behaviour of bolted joints constituted by commercial steel bolts. They were tested under both monotonic and fatigue tensile loading, with different R-ratio. Results show that under increasing monotonic tensile loading the bolted joint is not the failure zone of the bolt, whereas such a bolted joint is the failure region under cyclic loading. The fatigue life decreases with the increase of the stress range and with the maximum stress, and pre-loading enlarges the fatigue life. Fatigue fracture surface shows a geometry of crescent moon in the case of short cracks and such a shape evolves towards a quasi-straight crack front in the case of long cracks. Fatigue fracture usually happens at the root of the first notch inside the bolted joint, although fracture initiation may happen in several consecutive notch roots, increasing the initiation angle of the fatigue crack as the applied stress diminishes.  相似文献   

12.
陈建桥 《金属学报》1993,29(10):33-39
通过考察碳素工具钢的表面滑移、疲劳破坏及表面裂纹的扩展条件,以统一的局部应力讨论了光滑试样和裂纹试样的疲劳特征。分析和实验结果表明,在裂纹试样的名义应力小于光滑试样表面滑移门槛应力的范围内,线弹性断裂力学是有效的,对应裂纹扩展门槛值的裂尖性区为一常数。  相似文献   

13.
Fatigue crack growth (FCG) behavior of 9Cr/CrMoV dissimilar welded joint at elevated temperature and different stress ratios was investigated. Attention was paid to the region near the fusion line of 9Cr where carbon-enriched zone (CEZ) and carbon-depleted zone (CDZ) formed due to carbon migration during the welding process. Hard and brittle tempered martensite dominated the stress ratio-insensitive FCG behavior in the coarse grain zone (CGZ) of 9Cr-HAZ. For crack near the CGZ-CEZ interface, crack deflection through the CEZ and into the CDZ was observed, accompanied by an accelerating FCG rate. Compared with the severe plastic deformation near the secondary crack in 9Cr-CGZ, the electron back-scattered diffraction analysis showed less deformation and lower resistance in the direction toward the brittle CEZ, which resulted in the transverse deflection. In spite of the plastic feature in CDZ revealed by fracture morphology, the less carbides due to carbon migration led to lower strength and weaker FCG resistance property in this region. In conclusion, the plasticity deterioration in CEZ and strength loss in CDZ accounted for the FCG path deflection and FCG rate acceleration, respectively, which aggravated the worst FCG resistance property of 9Cr-HAZ in the dissimilar welded joint.  相似文献   

14.
Cemented carbides are used in many applications, such as drawing dies, cutting tools and hot rolls. In applications where cyclic temperature variations are present, an important factor that must be taken into account is thermal fatigue (TF). In this study, TF behaviour of two commercial cemented carbides was evaluated by means of a custom test configuration inducing a biaxial state of stress. At an early stage of the damage process, crack density is higher in WC-30(CoNiCrFe), while crack length is lower than WC-20Co. At a later stage cracking proceeds by propagation of existing cracks, partly reducing the difference between the two grades. The prevailing fracture modes are different in the two materials. In WC-20Co the main fractures occur at the WC/WC grain boundary and at WC/Co interface. In WC-30(CoNiCrFe) cracking proceeds by fracture of carbide particles and shear fracture of binder phase. A possible influence of oxidation on the TF crack propagation has been evidenced.  相似文献   

15.
Two types of fatigue tests, a rotating bending fatigue test and a three- or four-point bending fatigue test, were carried out on a fine grained WC–Co cemented carbide to evaluate its fatigue crack growth behavior and fatigue lifetime. From successive observations of the specimen surface during the fatigue process, it was revealed that most of the fatigue lifetime of the tested WC–Co cemented carbide was occupied with crack growth cycles. Using the basic equation of fracture mechanics, the relationship between the fatigue crack growth rate (da/dN) and the maximum stress intensity factor (Kmax) was derived. From this relation, both the values of the threshold intensity factor (Kth) and the fatigue fracture toughness (Kfc) of the material were determined. The fatigue lifetime of the WC–Co cemented carbide was estimated by analysis based on the modified linear elastic fracture mechanics approach. Good agreement between the estimated and experimental fatigue lifetimes was confirmed.  相似文献   

16.
The oxidation behavior at 700°C and its influence on room-temperature mechanical strength of three grades of WC–Co cemented carbides containing different binder content were studied. Oxidation kinetics, determined by thermogravimetric measurement, were found to follow a linear time dependence of weight gain per unit area in all the cases. It was also observed to rise with an increase in the oxygen concentration of the atmosphere and a reduction of the cobalt content. Three oxidation times of 10 min, 1 and 6 h were chosen to evaluate changes in the mechanical strength. Fracture resistance of oxidized samples were measured at room temperature under four-point bending and compared to that of non-oxidized specimens. In all cases, a pronounced degradation in strength was observed after oxidation. The mechanical characterization studies were complemented by detailed fractographic examination and the results were analyzed by linear-elastic fracture mechanics (LEFM). It is conjectured that strength reduction results from a combination of load-bearing section reduction (extrinsic effect) and a concomitant interplay of several factors including increasing size and severity of critical flaws, wedge-effects in the case of heterogeneous oxide penetration and residual tensile stresses associated with volume and thermal differences between the substrate and the oxide scale (intrinsic effects).  相似文献   

17.
The detrimental effects of carbides and porosity on the fatigue crack initiation and propagation of nickel-based single-crystal superalloys have been reported by many previous studies. However, few studies have quantitatively compared the fatigue damaging effects of carbides and pores on the fatigue crack evolution. In this study, a high-resolution X-ray computed tomography (XCT) characterization of a DD5 nickel-based single-crystal superalloy during fatigue test was performed. The evolution of carbides, pores and cracks at all stages was observed and tracked. In order to quantify the 3D microstructures, a new damage factor that correlates the morphology of fracture surface with crack evolution behaviors was proposed. It was found that porosity was more detrimental than carbides in crack initiation and propagation during fatigue tests. Furthermore, pore spacing has been found to be the most significant factor among all controlling pore characteristics in the crack initiation stage and sphericity is the most critical pore characteristic in the crack propagation stage. Therefore, by statistically analyzing the evolution of carbides and pores during fatigue tests in this study, the underlying fatigue cracking mechanism of nickel-based superalloys is revealed.  相似文献   

18.
The fatigue lives of friction stir spot welds in aluminum 6061-T6 lap-shear specimens under cyclic loading conditions are investigated in this paper. The paths of fatigue cracks near friction stir spot welds in lap-shear specimens are first examined. The experimental observations suggest that under cyclic loading conditions, the fatigue crack is initiated near the possible original notch tip in the stir zone and propagates along the circumference of the nugget, then through the sheet thickness and finally grows in the width direction to cause final fracture. A fatigue crack growth model based on the Paris law for crack propagation and the local stress intensity factors for kinked cracks is then adopted to predict the fatigue lives of friction stir spot welds. The global and local stress intensity factors are used to estimate the local stress intensity factors of kinked cracks with experimentally determined kink angles. The results indicate that the fatigue life predictions based on the Paris law and the local stress intensity factors as functions of the kink length agree well with the experimental results.  相似文献   

19.
THERMALSHOCKFATIGUEBEHAVIORSOFCEMENTEDCARBIDEYG20①LiuNing,XuGenying,XuYudongDepartmentofMaterialsScienceandEnginering,AnhuiIn...  相似文献   

20.
1. IntroductionDue to comparable strength and price, and lower density, magnesium alloys are replacing aluminum alloys as construction materials, especially ill automobile illdustry. N()wadays, the amount of magnesium for die-casting, 70% of which will be using ill the c;trproduction, is increasing with an average rate of 15% in the world, 30% in Nortll Anleri(.aand 60% in Europe[1--5] each year.Ogarevic and Stephensl6] indicated that a significant amount of stress--life (S-N) 1behavior data…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号