首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为提高气动伺服系统的行程与精度,设计了一种新型的使用金属波纹管作为单极驱动机构的气动伺服系统,并建立了新型气动伺服系统的动力学模型。所建模型采用传统的PID控制,通过MATLAB软件Simulink仿真研究了控制效果,所得仿真结果能较好的跟随输入信号。根据所建模型搭建试验平台,使用LabVIEW作为上位机采集数据得到波形,所得试验结果与仿真结果基本一致,验证了仿真模型的有效性。  相似文献   

2.
为了解决某火炮弹丸协调臂电液伺服系统位置控制精度问题和鲁棒性问题,提出了一种基于扰动观测器的弹丸协调臂Terminal滑模控制策略。推导出弹丸协调臂电液伺服系统的动力学方程,将系统的参数不确定性以及外界扰动处理为干扰项。采用指数趋近的干扰观测器进行在线观测并在控制律中进行补偿,提高了系统的鲁棒性。同时为了克服传统滑模控制在线性滑模面条件下状态渐进收敛导致无法在有限时间内到达平衡状态的特点,设计了一种全局快速Terminal滑动模态,使系统在有限时间内到达滑模面,系统状态在有限时间内迅速收敛到平衡状态,最后利用Lyapunov证明全局稳定性。仿真结果证明,该控制策略能对电液伺服系统不确定性和干扰具有很好的鲁棒性,且能明显提高弹丸协调臂动态精度与稳态精度。  相似文献   

3.
针对气动伺服系统复杂的非线性问题,提出了一种线性自抗扰控制策略对气动伺服系统进行位置控制。利用线性自抗扰控制器不依赖于被控对象精确数学模型的特点,解决被控气动系统内外各种不确定性,设计了线性扩张状态观测器来估计和补偿系统的全部干扰,同时给出了线性状态误差反馈控制器来保证系统的闭环响应性能。证明了线性扩张状态观测器的收敛性和闭环系统的镇定性。应用线性自抗扰控制策略与PID控制策略在气缸伺服系统中进行实验、比较,实验结果表明所设计的线性自抗扰控制器具有良好的控制效果。  相似文献   

4.
针对工业机器人关节伺服系统存在时变负载和模型不确定性问题,提出了基于惯量估计的变增益自抗扰控制策略。首先,建立了关节伺服系统数学模型,并通过频域分析,得到了关节伺服系统二阶状态方程。为了削弱扰动和不确定参数的影响,设计了线性扩张状态观测器,利用自适应的方法估计惯量,同时结合鲁棒和滑模控制以保持系统稳定性,并对该控制策略进行了仿真和实验研究。实验结果表明,在该控制策略下,电机端正弦信号跟踪误差小于0.2 rad,在负载扰动下位置误差小于0.03 rad,较之单一自抗扰控制误差大约减小了40%,具有较强的抗扰动性,提高了关节伺服系统的控制精度和动态性能。  相似文献   

5.
为了克服外界干扰、未知负载等不确定性和电机动态特性对移动装配机器人手臂末端空间轨迹跟踪的影响,提出了一种基于扩张状态观测器的滑模鲁棒控制律。首先建立了包含不确定性和电机动态特性的数学模型,然后设计了扩张状态观测器来准确估计不确定性,在此基础上提出了滑模鲁棒控制律,最终实现了对移动装配机器人手臂末端空间轨迹跟踪的高精度控制。仿真结果表明,所设计的滑模鲁棒控制律具有更优的控制效果,移动装配机器人手臂末端空间轨迹的最大跟踪误差仅为0.5 cm,所设计的扩张状态观测器能够准确估计不确定性,最大估计误差仅为0.2 N·m,估计精度较高。移动装配机器人手臂空间固定坐标定位实验结果表明,在基于扩张状态观测器的滑模鲁棒控制律的作用下,移动装配机器人手臂末端空间轨迹的最大跟踪误差仅为0.24 cm,平均每次定位的运行时间仅为1.55 s,表现出了更优的快速性、准确性和工程实用性。  相似文献   

6.
摘要:针对工业机器人关节伺服系统存在时变负载和模型不确定性问题,提出了基于惯量估计的变增益自抗扰控制策略。首先,建立了关节伺服系统数学模型,并通过频域分析,得到了关节伺服系统二阶状态方程。为了削弱扰动和不确定参数的影响,设计了线性扩张状态观测器,利用自适应的方法估计惯量,同时结合鲁棒和滑模控制以保持系统稳定性,并对该控制策略进行了仿真和实验研究。实验结果表明,在该控制策略下,电机端正弦信号跟踪误差小于02 rad,在负载扰动下位置误差小于003 rad,较之单一自抗扰控制误差大约减小了40%,具有较强的抗扰动性,提高了关节伺服系统的控制精度和动态性能。 .txt  相似文献   

7.
针对不确定性及外部干扰下主动升沉补偿系统的非线性控制问题,提出一种基于扩展干扰观测器自适应鲁棒控制器。扩展状态观测器将外部扰动扩张成新的状态变量,利用输出反馈观测扩张的状态。基于反步法构建自适应控制器,结合拓展状态观测器处理系统方程存在的建模误差、外干扰、不确定性及参数不确定性。基于滑模控制方法,设计非线性滑模反馈律,从而提高系统在外部干扰下的鲁棒性能。最后,通过李雅普诺夫函数证明整个闭环系统的稳定性。基于升沉补偿电液伺服系统进行仿真实验,结果表明:所设计控制器在存在不确定性及外部干扰的情况下具有良好的控制精度及鲁棒性。  相似文献   

8.
针对扰动对永磁同步电机转速伺服系统性能的影响,提出了基于扰动观测器的电流环自适应滑模控制方法。设计了自适应律在线估计系统的内部参数摄动以补偿模型不确定性扰动。同时,设计了滑模扰动观测器实时估计系统外部负载扰动,并将观测值前馈补偿到电流环自适应滑模控制器,在提高系统鲁棒性的同时降低滑模控制系统的抖振。实验结果显示,采用基于扰动观测器的电流环自适应滑模控制方法,系统可快速、准确、无超调地跟踪900r/min的速度指令,调节时间为0.08s,稳态误差为±5r/min。加入0.6N·m的负载扰动,该控制方法的最大转速波动为21r/min,比PI控制方法的转速波动减小了3.4%。仿真和实验结果表明,基于扰动观测器的电流环自适应控制方法提高了永磁同步电机转速伺服系统的鲁棒性和动态响应性能,同时可有效抑制滑模控制系统的抖振。  相似文献   

9.
侧辊位移的精确控制对实现四辊卷板机高效加工至关重要,其核心问题是提高阀控非对称缸电液伺服系统的抗扰能力。由于电液伺服系统具有高度非线性和时变不确定性,传统非线性控制方法很难有效处理包含未知动态、外部扰动以及参数变化等的多源不确定扰动。提出一种四辊卷板机侧辊位移线性自抗扰控制方法。综合考虑各种不确定扰动因素的影响,设计了线性扩张状态观测器进行实时估计,采用状态误差反馈控制律给予主动补偿,并消除跟踪误差,证明了线性扩张状态观测器状态观测误差的收敛性和电液伺服系统的闭环稳定性。试验结果表明,所设计的线性自抗扰控制器能有效抑制电液伺服系统中多源不确定性扰动,实现侧辊位移的快速、精确轨迹跟踪。  相似文献   

10.
李丽  刘超  赵苓 《液压与气动》2022,(5):159-166
针对带有迟滞非线性的气动运动模拟平台的轨迹跟踪提出了带有切换扩张状态观测器的自抗扰控制方法。气动运动模拟平台的迟滞非线性特性主要指气动人工肌肉在正向充气反向放气时长度和拉力曲线的差异。针对此特性设计了切换扩张状态观测器来估计和补偿模型非线性,分别对于气动人工肌肉正反向充放气的不同模型采用不同的观测器增益,以提高状态估计效果,减小跟踪误差。进一步,设计了状态误差反馈控制器,得到了基于切换扩张状态观测器的二阶非线性动态系统全局有界稳定的充分条件。最后实验结果证实了所设计的切换扩张状态观测器的实际效果。  相似文献   

11.
针对交流伺服系统速度控制问题,提出了一种动态积分滑模控制方法。利用动态滑模控制方法消除抖振,在切换函数中引入积分环节提高了稳态精度,并给出了交流伺服系统速度控制器的设计方法。仿真试验表明,该方法能明显削弱抖振,提高稳态精度,并有较强的鲁棒性。  相似文献   

12.
级联控制策略被应用于液压伺服系统位置控制,以提高系统输出响应性能。为了抑制液压伺服系统中各种不确定的非线性因素和外部干扰,提出了基于干扰观测器的终端滑模控制与非线性补偿相结合的级联控制策略,利用Lyapunov稳定性理论证明了位置闭环系统在有限时间内收敛。与渐近收敛控制器不同,级联控制器保证了系统状态误差和观测器估计误差在有限的时间收敛到0。利用MATLAB/Simulink对设计的控制器进行了仿真验证,结果验证了提出的控制器的理论可行性。为了模拟外界未知干扰,在液压伺服系统基础上加入阻尼可调减震器,以此开展实验研究。结果表明:提出的控制器有效抑制未知干扰影响,且提高了液压伺服系统的跟踪精度。  相似文献   

13.
针对非线性气动伺服系统的轨迹跟踪和柔顺控制问题,采用MIMO滑模控制器实现气动系统多输出的跟踪控制。对气动伺服系统基于流量控制策略的动力学进行建模,将其状态方程转换为严格反馈系统形式;设计用于轨迹跟踪和内腔压力跟踪的双滑模面,基于传统的滑模控制率构造用于气动系统的双控制输入,实现气动系统控制器的设计。基于Simulink搭建控制仿真平台,仿真结果验证了控制器对系统多输出的有效跟踪控制。  相似文献   

14.
永磁同步直线电机由于反电势和逆变器频繁切换导致电流谐波分量较大,同时参数时变以及负载突变等扰动严重影响伺服系统的控制精度。本文采用一种基于降阶状态观测器的双环自抗扰伺服控制算法,以降低控制系统的谐波抑制从而提高控制精度。首先,构造了位置速度环级联的二阶自抗扰控制器。运用极点配置法对三阶线性状态观测器进行降阶,减小了相位滞后的影响,提高了伺服系统的控制精度;其次,电流环采用一阶非线性自抗扰控制器,消除了积分饱和的影响,降低了三相电流的谐波含量。最后,与基于自抗扰控制的其他优化算法进行对比,实验表明在多工况下降阶双环自抗扰控制的总谐波失真不超过2.13%,推力波动可减小至1.49%,稳态误差不大于15μm。  相似文献   

15.
针对阀控液压马达系统受非线性复杂扰动导致流量输出不稳定的问题,提出一种基于三阶线性自抗扰控制器(LADRC)的液压伺服流量控制方法。基于高阶LADRC理论,提出将ADRC应用于非线性的液压伺服系统控制,分析并验证了跟踪微分器的跟踪误差前馈增益具有抑制系统超调的作用。采用跟踪误差前馈与扩张状态观测器扰动反馈相分离的办法,提出一种针对复杂非线性三阶被控系统的改进的三阶LADRC算法。最后验证了该算法对一类大范围复杂不确定性液压伺服系统具有较PID更强的扰动抑制能力。  相似文献   

16.
针对风电机组的传动系统、发电机和桨距系统故障的有限时间重构和实际应用中气动转矩无法准确获取等问题.提出一种新的自适应非奇异终端滑模观测器.在观测器中引入自适应律,确保滑模观测器不受未知扰动的影响.设计的非奇异滑模面能有效解决常规滑模观测器的抖振问题,避免了抖振现象造成的故障误判和漏判等问题,提高了故障诊断效率.针对变桨系统故障,通过引入故障指示参数,将桨距执行机构的液压压降模型转化为加性故障.然后,利用两个级联滑模观测器对桨距系统进行观测,给出了有限时间状态的估计和故障重构.最后,仿真结果验证了风电机组状态的有限时间估计和执行器故障的重构,达到了风电机组故障诊断快速诊断的目的 .证明所提方法的正确性、可行性.  相似文献   

17.
针对电液位置伺服系统由于参数不确定性、非线性、复杂时变性而导致的响应速度慢、跟踪精度低、抗干扰能力差的问题,提出一种具有更高跟踪精度及抑制抖振能力的改进P SO算法优化的自抗扰控制(Improved?PSO auto disturbance rejection control,IPSO?ADRC)方法.首先,建立电液位置伺服系统的误差状态空间方程,采用3阶跟踪微分器、扩张状态观测器及状态误差反馈律构建自抗扰控制器模型;其次,分析惯性权重递减P SO算法存在的早熟、易陷入局部最小值等问题,综合考虑粒子迭代次数及当前粒子与全局最优粒子间距离两个因素对寻优结果的影响,提出一种改进P SO算法;最后,将改进后的P SO算法应用于所设计的自抗扰控制器中以提高控制性能.仿真及试验结果表明,相比于传统P ID控制和常规自抗扰控制,采用改进P SO算法优化的自抗扰控制具有位置跟踪精度高、抗干扰能力好的优点.  相似文献   

18.
针对机械臂末端运动受约束的力/位置控制中无法精确建模、模型具有外界干扰和关节角速度不可测等问题,设计一种基于神经网络观测器的补偿控制系统。首先,通过解耦力和位置控制,得到降阶动态模型。然后,利用神经网络速度观测器对关节速度在线估计,并用神经网络对降阶动力学模型中的不确定项进行逼近补偿滑模控制器。最后,基于Lyapunov稳定性理论证明系统稳定性,并对二连杆机械臂进行仿真。仿真结果表明所设计的控制系统的有效性。  相似文献   

19.
针对自动化电机受电磁干扰误差较大,导致电机控制效果较差、难以反映真实运行状态的问题,提出基于干扰误差补偿的自动化电机自适应滑模反演控制方法。构建电机的转子动力学模型,设计干扰观测器,将干扰预测输出值传输至增益调整模块,构建非线性干扰预测动态方程,将预测的干扰因素转化为相应控制量。电机的连续控制问题即跟踪控制问题,按照滑模反演控制理论,定义电机的两个子误差,引入滑模切换函数,构建转子动力学惯性逆矩阵获取控制力矩,通过跟踪转子输出轴完成电机自适应滑模反演控制。实验结果表明,所提方法能够较好地跟踪实际干扰信号变化轨迹,对自动化电机的控制性能较好。  相似文献   

20.
在机械臂轨迹跟踪控制过程中,当利用观测器对模型参数不确定性和外部未知动态扰动进行估计时,估计时间容易受扰动初值的影响,为此基于固定时间扰动观测器设计了一种自适应滑模轨迹跟踪控制方法。利用固定时间观测器的特性,在固定时间内获得机械臂内部模型误差和外部不确定扰动的估计,对扰动估计做出补偿,通过滑模控制策略实现机械臂的轨迹跟踪控制。针对滑模控制伴随抖震的特性,论文对滑模控制器的趋近律进行了抑制抖震的改进设计。通过仿真实验证明:基于固定时间扰动观测器的滑膜控制方法能够在固定时间内准确获取扰动的估计值,能够控制机械臂以高精度跟踪给定轨迹;通过与基于高阶扰动观测器的滑模控制方法进行仿真对比,验证了该方法在消除不确定扰动的基础上,能够有效地抑制系统抖振,并且跟踪误差能够在短时间内以指数速率完成收敛。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号