首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This article demonstrates the tuning of the biological activity of a surface functionalized by a polyelectrolyte multilayer. The interaction of protein A with macrophages is used as the model system. The film consists of two polypeptides, poly(lysine) and poly(glutamic acid); each “build‐up” solution is a mixture of the respective D ‐ and L ‐enantiomers (d and l enantiomers). Cells are deposited on top of the film, and they produce tumor necrosis factor alpha (TNF‐α) as they come into contact with the protein. Depending upon the d/l‐enantiomer ratio of the polyelectrolyte solutions used for the film build‐up, and the embedding depth of the protein, the production of TNF‐α commences after a varying induction time and displays a transition from no‐production to full‐production, which takes place over a period of time that depends on the film's composition and embedding depth. Thus, it is shown that by changing these two parameters the timing of the protein's activity can be accurately tuned.  相似文献   

2.
The formation of weak polyelectrolyte films on planar and spherical supports has recently evoked major interest, as such coatings allow novel material properties to be tunable by pH and salt adjustment of the polyelectrolyte deposition conditions. We report on the build up of multilayers of the weak polyelectrolytes poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH) on submicrometer‐sized polystyrene (PS) and silica colloid spheres (~ 500 nm) with the aid of copper ion templating. The copper ions complex to the carboxylate groups of PAA, facilitating the formation of PAA/PAH multilayers on the particles. Regular growth of the layers on the colloid spheres with each polyelectrolyte deposition step was confirmed by microelectrophoresis, single‐particle light scattering (SPLS), and transmission electron microscopy (TEM), with an average bilayer thickness of ~ 3 nm. The polyelectrolyte multilayer‐coated particles formed stable colloidal dispersions, with ζ‐potentials ranging from 30 mV (PAH outer layer) and –50 mV (PAA outer layer). Complementary quartz‐crystal microbalance and UV‐vis spectrophotometry studies on PAA/PAH multilayers formed on planar supports were performed to examine the film formation and the role of copper ion binding to the layers. PAA/PAH multilayers formed on colloid particles were also chemically crosslinked by using the activator 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide (EDC). The degree of film crosslinking could be readily controlled by varying the concentration of EDC employed. Following solvent decomposition of the template particles coated with crosslinked PAA/PAH multilayers, intact hollow polymer capsules were obtained. These capsules were found to be impenetrable to polystyrene.  相似文献   

3.
Layer‐by‐layer self‐assembled polyelectrolyte films containing a charged cyclodextrin and lipopolysaccharide (LPS) are developed for the first time as a potential model for local endotoxin antagonist delivery. We have examined the biological activity of a lipopolysaccharide from E. coli incorporated into multilayered architectures made of poly‐(L ‐lysine) and poly‐(L ‐glutamic acid). Used in such build‐ups, a polycationic cyclodextrin, heptakis(6‐deoxy‐6‐pyridylamino)‐β‐cyclodextrin showed molecular chaperone properties by enabling restoration of the LPS biological activity whenever lost upon interaction with poly‐(L ‐lysine).  相似文献   

4.
Axons of the adult central nervous system exhibit an extremely limited ability to regenerate after spinal cord injury. Experimentally generated patterns of axon growth are typically disorganized and randomly oriented. Support of linear axonal growth into spinal cord lesion sites has been demonstrated using arrays of uniaxial channels, templated with agarose hydrogel, and containing genetically engineered cells that secrete brain‐derived neurotrophic factor (BDNF). However, immobilizing neurotrophic factors secreting cells within a scaffold is relatively cumbersome, and alternative strategies are needed to provide sustained release of BDNF from templated agarose scaffolds. Existing methods of loading the drug or protein into hydrogels cannot provide sustained release from templated agarose hydrogels. Alternatively, here it is shown that pH‐responsive H‐bonded poly(ethylene glycol)(PEG)/poly(acrylic acid)(PAA)/protein hybrid layer‐by‐layer (LbL) thin films, when prepared over agarose, provided sustained release of protein under physiological conditions for more than four weeks. Lysozyme, a protein similar in size and isoelectric point to BDNF, is released from the multilayers on the agarose and is biologically active during the earlier time points, with decreasing activity at later time points. This is the first demonstration of month‐long sustained protein release from an agarose hydrogel, whereby the drug/protein is loaded separately from the agarose hydrogel fabrication process.  相似文献   

5.
Poly(dimethylsiloxane) (PDMS) microbioreactors with computerized perfusion controls would be useful for engineering the bone marrow microenvironment. However, previous efforts to grow primary bone marrow cells on PDMS substrates have not been successful due to the weak attachment of cells to the PDMS surface even with adsorption of cell adhesive proteins such as collagen or fibronectin. In this work, modification of the surface of PDMS with biofunctional multilayer coatings is shown to promote marrow cell attachment and spreading. An automated microfluidic perfusion system is used to create multiple types of polyelectrolyte nanoscale coatings simultaneously in multiple channels based on layer‐by‐layer deposition of PDDA (poly(diallyldimethyl ammonium chloride)), clay, type IV collagen and fibronectin. Adherent primary bone marrow cells attached and spread best on a surface with composition of (PDDA/clay)5 (Collagen/Fibronectin)2 with negatively charged fibronectin exposed on the top, remaining well spread and proliferating for at least two weeks. Compared to traditional more macroscopic layer‐by‐layer methods, this microfluidic nanocomposite process has advantages of greater flow control, automatic processing, multiplexed fabrication, and use of lesser amounts of polymers and protein solutions.  相似文献   

6.
Due to their exceptional orientation of 2D nanofillers, layer‐by‐layer (LbL) assembled polymer/graphene oxide thin films exhibit unmatched mechanical performance relative to any conventionally produced counterparts with similar composition. Unprecedented mechanical property improvement, by replacing graphene oxide with pristine graphene, is demonstrated in this work. Polyvinylpyrrolidone‐stabilized graphene platelets are alternately deposited with poly(acrylic acid) using hydrogen bonding assisted LbL assembly. Transmission electron microscopy imaging and the Halpin‐Tsai model are used to demonstrate, for the first time, that intact graphene can be processed from water to generate polymer nanocomposite thin films with simultaneous parallel‐alignment, high packing density, and exfoliation. A multilayer thin film with only 3.9 vol% of highly exfoliated, and structurally intact graphene, increases the elastic modulus (E) of a polymer multilayer thin film by 322% (from 1.41 to 4.81 GPa), while maintaining visible light transmittance of ≈90%. This is one of the greatest improvements in elastic modulus ever reported for a graphene‐filled polymer nanocomposite with a glassy (E > 1 GPa) matrix. The technique described here provides a powerful new tool to improve nanocomposite properties (mechanical, gas transport, etc.) that can be universally applied to a variety of polymer matrices and 2D nanoplatelets.  相似文献   

7.
The ability to reliably engineer surfaces with nanoscale precision is a rapidly developing field of research with applications ranging from biosensing and biomedical materials to antifouling and corrosion protection. The layer‐by‐layer (LbL) approach is a widely utilized method for engineering surfaces, in part because of the large array of polymeric materials that can be integrated and the diverse range of functionality that these materials afford. Herein, we discuss the LbL deposition of multicomponent ‘blend' solutions to form polyelectrolyte blend multilayer films and coatings. This approach is a versatile platform for enhancing film stability, incorporating a wide range of functional materials, controlling film morphology and material properties, and increasing biological response, thereby expanding the range of potential applications.  相似文献   

8.
We demonstrated a unique approach that combines a layer‐by‐layer (LbL) self‐assembly method with dendrimer chemistry to functionalize Fe3O4 nanoparticles (NPs) for specific targeting and imaging of cancer cells. In this approach, positively charged Fe3O4 NPs (8.4 nm in diameter) synthesized by controlled co‐precipitation of FeII and FeIII ions were modified with a bilayer composed of polystyrene sulfonate sodium salt and folic acid (FA)‐ and fluorescein isothiocyanate (FI)‐functionalized poly(amidoamine) dendrimers of generation 5 (G5.NH2‐FI‐FA) through electrostatic LbL assembly, followed by an acetylation reaction to neutralize the remaining surface amine groups of G5 dendrimers. Combined flow cytometry, confocal microscopy, transmission electron microscopy, and magnetic resonance imaging studies show that Fe3O4/PSS/G5.NHAc‐FI‐FA NPs can specifically target cancer cells overexpressing FA receptors. The present approach to functionalizing Fe3O4 NPs opens a new avenue to fabricating various NPs for numerous biological sensing and therapeutic applications.  相似文献   

9.
A facile method of connecting fluorescent meso‐tetrakis(4‐sulfonatophenyl)porphine tetranion nanotubes to polyelectrolyte capsules is developed. Heat‐sensitive robust polyelectrolyte capsules consisting of poly(diallyldimethylammonium chloride) and poly(styrene sulfonate) multilayers have been fabricated using the conventional layer‐by‐layer technique. Supramolecular aggregation of porphyrin monomers to nanotubes is induced in the microenvironment of the capsules by sequential addition of salt and acid. Scanning electron microscopy, transmission electron microscopy, and atomic force microscopy images reveal satellite‐like structures consisting of a central capsule core with porphyrin nanotubes emerging radially from the capsule walls. The growth and the distribution of the porphyrin units have been monitored by UV‐vis spectroscopy, fluorescence spectroscopy, and confocal laser scanning microscopy. Changing the temperature alters the dimensions and the arrangement of the nanotubes on the capsule walls. Such an attachment of porphyrin tubes onto robust functional capsules should help in developing an artificial light‐harvesting system.  相似文献   

10.
Multilayer thin films of ~ 7 nm diameter gold nanoparticles (GNPs) linked with horse heart myoglobin (Mb) are fabricated, for the first time, by layer‐by‐layer (LbL) assembly on glass slides, and silicon and plastic substrates. The GNP/Mb nanocomposite films show sharp surface plasmon resonance (SPR) absorption bands that are used to follow the LbL growth of the film and to determine the kinetics of GNP adsorption on the Mb‐modified surface. The GNP/Mb nanocomposite films are characterized using atomic force microscopy, transmission electron microscopy, polarized UV‐vis spectroscopy, and spectroscopic ellipsometry. The GNPs in the multilayer films are spatially separated from one another, and interparticle interactions remain in the film, making it optically anisotropic. The GNP/Mb nanocomposite films are stable in air at temperatures up to 100 °C, and can withstand successive immersions in strongly acidic and basic solutions. The SPR absorption band of the GNP/Mb nanocomposite film in air exhibits a red‐shift in the wavelength maximum and an increase in the maximum absorbance relative to that in water. This result, which is in contrast to that observed with a GNP monolayer on an aminosilane‐functionalized substrate, suggests the shrinkage in air and swelling in water of Mb molecules embedded in the nanocomposite film.  相似文献   

11.
Layer‐by‐layer (LbL) self‐assemblies have inherent potential as dynamic coatings because of the sensitivity of their building blocks to external stimuli. Here, humidity serves as a feasible trigger to activate the self‐healing of a microporous polyethylenimine/poly(acrylic acid) multilayer film. Microporous structures within the polyelectrolyte multilayer (PEM) film are created by acid treatment, followed by freeze‐drying to remove water. The self‐healing of these micropores can be triggered at 100% relative humidity, under which condition the mobility of the polyelectrolytes is activated. Based on this, a facile and versatile method is suggested for directly integrating hydrophobic drugs into PEM films for surface‐mediated drug delivery. The high porosity of microporous film enables the highest loading (≈303.5 μg cm?2 for a 15‐bilayered film) of triclosan to be a one‐shot process via wicking action and subsequent solvent removal, thus dramatically streamlining the processes and reducing complexities compared to the existing LbL strategies. The self‐healing of a drug‐loaded microporous PEM film significantly reduces the diffusion coefficient of triclosan, which is favorable for the long‐term sustained release of the drug. The dynamic properties of this polymeric coating provide great potential for its use as a delivery platform for hydrophobic drugs in a wide variety of biomedical applications.  相似文献   

12.
The use of solution‐processable electrically conducting films is imperative for realizing next‐generation flexible and wearable devices in a large‐scale and economically viable way. However, the conventional approach of simply complexing metallic nanoparticles with a polymeric medium leads to a tradeoff between electrical conductivity and material properties. To address this issue, in this study, a novel strategy is presented for fabricating all‐solution‐processable conducting films by means of metal/polyelectrolyte complexation to achieve controlled electrical percolation; this simultaneously imparts superior electrical conductivity and good mechanical properties. A polymeric matrix comprised of polyelectrolyte multilayers is first formed using layer‐by‐layer assembly, and then Ag nanoparticles are gradually synthesized and gradationally distributed inside the polymeric matrix by means of a subsequent procedure of repeated cationic exchange and reduction. During this process, electrical percolation between Ag nanoparticles and networking of electrical pathways is facilitated in the surface region of the complexed film, providing outstanding electrical conductivity only one order of magnitude less than that of metallic Ag. At the same time, the polymer‐rich underlying region imparts strong, yet compliant, binding characteristics to the upper Ag‐containing conducting region while allowing highly flexible mechanical deformations of bending and folding, which consequently makes the system outperform existing materials.  相似文献   

13.
In this paper, we report an alternative simple method to shift the electroactivity of polyaniline (PANI) films to neutral pH conditions by forming multilayer assemblies with poly(anions) using the layer‐by‐layer (LBL) deposition method. A series of self‐assembled PANI multilayer films with poly(anions), such as sulfonated polyaniline (SPANI), poly(acrylic acid) (PAA), poly(vinyl sulfonate) (PVS), and poly(styrene sulfonate) (PSS), were prepared by the LBL method. Their electrochemical behavior and catalytic ability for the oxidation of β‐nicotinamide adenine dinucleotide (NADH) in neutral solution were investigated by electrochemistry (EC) combined with surface plasmon spectroscopy (SPS) and the quartz crystal microbalance (QCM) technique. Results indicated that all the films showed very good stability, reversibility, and electroactivity in neutral solution. All the multilayer films can electrocatalyze the oxidation of NADH, with the catalytic ability of PANI/SPANI being higher than that of the other assemblies under the same conditions. The catalytic abilities of the films with the same thickness prepared by the copolymerization method and the LBL method were also compared.  相似文献   

14.
Perovskite nanoparticle‐based nanocomposite thin films strictly tailored using unconventional layer‐by‐layer (LbL) assembly in organic media for piezoelectric nanogenerators (NGs) are demonstrated. By employing sub‐20‐nm BaTiO3 nanoparticles stabilized by oleic acid ligands (i.e., OA‐BTONPs) and carboxylic acid (COOH)‐functionalized polymers, such as poly(acrylic acid) (PAA), the resulting OA‐BTONP/PAA nanocomposite multilayers are prepared by exploiting the high affinity between the COOH groups of PAA and the BTONPs. The ferroelectric and piezoelectric performance of the (PAA/OA‐BTONP)n thin films can be precisely controlled by altering the bilayer number, inserted polymer type, and OA‐BTONP size. It is found that the LbL assembly in nonpolar solvent media can effectively increase the quantity of adsorbed OA‐BTONPs, resulting in the dramatic enhancement of electric power output from the piezoelectric NGs. Furthermore, very low leakage currents are detected from the (PAA/OA‐BTONP)n thin films for obtaining highly reliable power‐generating performance of piezoelectric NGs.  相似文献   

15.
Creating actuators capable of mechanical motion in response to external stimuli is a key for design and preparation of smart materials. The lifetime of such materials is limited by their eventual wear. Here, self‐healable and adhesive actuating materials are demonstrated by taking advantage of the solvent responsive of weak polyelectrolyte multilayers consisting of branched poly(ethylenimine)/poly(acrylic acid) (BPEI/PAA). BPEI/PAA multilayers are dehydrated and contract upon contact with organic solvent and become sticky when wetted with water. By constructing an asymmetric heterostructure consisting of a responsive BPEI/PAA multilayer block and a nonresponsive component through either layer‐by‐layer assembly or the paste‐to‐curl process, smart films that actuate upon exposure to alcohol are realized. The curl degree, defined as degrees from horizontal that the actuated material reaches, can be as high as ≈228.9°. With evaporation of the ethanol, the curled film returns to its initial state, and water triggers fast self‐healing extends the actuator's lifetime. Meanwhile, the adhesive nature of the wet material allows it to be attached to various substrates for possible combination with hydrophobic functional surfaces and/or applications in biological environments. This self‐healable adhesive for controlled fast actuation represents a considerable advance in polyelectrolyte multilayers for design and fabrication of robust smart advanced materials.  相似文献   

16.
A novel approach for encapsulation of hydrophobic materials into a hydrophilic multifunctional shell is presented, based on combining an ultrasonic technique and a layer‐by‐layer protocol. Polyglutamate/polyethyleneimine (PEI)/polyacrylic acid (PAA) and polyglutamate/PEI/PAA/silver nanocontainers loaded with a hydrophobic dye, 5,10,15,20‐tetraphenylporphin, dissolved in toluene, are fabricated. Uniform, stable, and monodisperse polyglutamate/PEI/PAA nanocontainers of about 600 nm are obtained. The hydrophobic core of the nanocontainers might contain a huge variety of water‐insoluble drugs and the outer polyelectrolyte shell may provide controlled permeability and desired multifunctionality. Confocal fluorescence microscopy and scanning electron microscopy are employed for the characterization of the resulting nanocontainers. Using sodium dodecyl sulfate as surfactant, the amount of nanocontainers, their monodispersity, and stability can be increased dramatically.  相似文献   

17.
Nanostructured titania‐polyelectrolyte composite and pure anatase and rutile titania tubes were successfully prepared by layer‐by‐layer (LbL) deposition of a water‐soluble titania precursor, titanium(IV ) bis(ammonium lactato) dihydroxide (TALH) and the oppositely charged poly(ethylenimine) (PEI) to form multilayer films. The tube structure was produced by depositing inside the cylindrical pores of a polycarbonate (PC) membrane template, followed by calcination at various temperatures. The morphology, structure and crystal phase of the titania tubes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD) and UV‐vis absorbance measurements. The as‐prepared anatase titania tubes exhibit very promising photocatalytic properties, demonstrated by the degradation of the azodye methyl orange (MO) as a model molecule. They are also easily separated from the reaction system by simple filtration or centrifugation, allowing for straightforward recycling. The reported strategy provides a simple and versatile technique to fabricate titania based tubular nanostructures, which could easily be extended to prepare tubular structures of other materials and may find application in catalysis, chemical sensing, and nanodevices.  相似文献   

18.
Layers of the polyelectrolytes poly(allylamine hydrochloride) (PAH, polycationic) and poly(styrene sulfonate) (PSS, polyanionic) are consecutively adsorbed on flat silicon oxide surfaces, forming stable, ultrathin multilayer films. Subsequently, a final monolayer of the polycationic copolymer poly(L ‐lysine)‐graft‐poly(ethylene glycol) (PLL‐g‐PEG) is adsorbed onto the PSS‐terminated multilayer in order to impart protein resistance to the surface. The growth of each of the polyelectrolyte layers and the protein resistance of the resulting [PAH/PPS]n(PLL‐g‐PEG) multilayer (n = 1–4) are followed quantitatively ex situ using X‐ray photoelectron spectroscopy and in situ using real‐time optical‐waveguide lightmode spectroscopy. In a second approach, the same type of [PAH/PSS]n(PLL‐g‐PEG) multilayer coatings are successfully formed on the surface of colloidal particles in order to produce surface‐functionalized, hollow microcapsules after dissolution of the core materials (melamine formaldehyde (MF) and poly(lactic acid) (PLA; colloid diameters: 1.2–20 μm). Microelectrophoresis and confocal laser scanning microscopy are used to study multilayer formation on the colloids and protein resistance of the final capsule. The quality of the PLL‐g‐PEG layer on the microcapsules depends on both the type of core material and the dissolution protocols used. The greatest protein resistance is achieved using PLA cores and coating the polyelectrolyte microcapsules with PLL‐g‐PEG after dissolution of the cores. Protein adsorption from full serum on [PAH/PPS]n(PLL‐g‐PEG) multilayers (on both flat substrates and microcapsules) decreases by three orders of magnitude in comparison to the standard [PAH/PPS]n layer. Finally, biofunctional capsules of the type [PAH/PPS]n(PLL‐g‐PEG/PEG‐biotin) (top copolymer layer with a fraction of the PEG chains end‐functionalized with biotin) are produced which allow for specific recognition and immobilization of controlled amounts of streptavidin at the surface of the capsules. Biofunctional multilayer films and capsules are believed to have a potential for future applications as novel platforms for biotechnological applications such as biosensors and carriers for targeted drug delivery.  相似文献   

19.
The alternate layer‐by‐layer (LBL) deposition of polycations and polyanions for the build up of multilayered polyelectrolyte films is an original approach that allows the preparation of tunable, biologically active surfaces. The resulting supramolecular nanoarchitectures can be functionalized with drugs, peptides, and proteins, or DNA molecules that are able to transfect cells in vitro. We monitor, for the first time, the embedding of a bioactive adenoviral (Ad) vector in multilayered polyelectrolyte films. Ad efficiently adsorbs on poly(L ‐lysine)–poly(L ‐glutamic acid) (PLL–PGA), PLL–HA (HA: hyaluronan), poly(allylamin hydrochloride)–poly(sodium‐4‐styrenesulfonate) (PAH–PSS), and CHI–HA (CHI: chitosan) films; it preserves its transduction capacity (which can reach 95 %) for a large number of cell types, and also allows vector uptake into receptor‐deficient cells, thus abrogating the restricted tropism of Ad.  相似文献   

20.
Hydrogen‐bonding interactions are an important alternative to electrostatic interactions for assembling multilayer thin films of uncharged components. Herein, a new method is reported for rendering such films stable at pH values close to physiological conditions. Multilayer films based on hydrogen bonding are assembled by the alternate deposition of poly[(styrene sulfonic acid)‐co‐(maleic acid)] (PSSMA) and poly(N‐isopropylacrylamide) (PNiPAAm) at pH 2.5. The use of PSSMA results in multilayers that contain free styrene sulfonate groups, as these moieties do not interact with the PNiPAAm functional groups. Subsequent infiltration of a multivalent ion (Ce4+ or Fe3+) leads to an increase in the total film mass, with little impact on the film morphology, as determined by using atomic force microscopy. To examine the film stability, the resulting films have been exposed to elevated pH (7.1). While there is substantial swelling of the multilayers (25 % and 55 % for Ce4+‐ and Fe3+‐stabilized films, respectively), film loss is negligible. This provides a stark contrast with non‐stabilized films, which disassemble almost immediately upon exposure to pH 7.1. This method represents a simple and effective strategy for stabilizing hydrogen‐bonded structures non‐covalently. Further, the multivalent ions also render the films responsive to changes in the local redox environment, as demonstrated by film disassembly after exposure of Fe3+‐treated films to iodide solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号