首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The current–voltage characteristics of ITO/PEDOT:PSS/OC1C10‐PPV:PCBM/Al solar cells were measured in the temperature range 125–320 K under variable illumination, between 0.03 and 100 mW cm–2 (white light), with the aim of determining the efficiency‐limiting mechanism(s) in these devices, and the temperature and/or illumination range(s) in which these devices demonstrate optimal performance. (ITO: indium tin oxide; PEDOT:PSS: poly(styrene sulfonate)‐doped poly(ethylene dioxythiophene); OC1C10‐PPV: poly[2‐methoxy‐5‐(3,7‐dimethyl octyloxy)‐1,4‐phenylene vinylene]; PCBM: phenyl‐C61 butyric acid methyl ester.) The short‐circuit current density and the fill factor grow monotonically with temperature until 320 K. This is indicative of a thermally activated transport of photogenerated charge carriers, influenced by recombination with shallow traps. A gradual increase of the open‐circuit voltage to 0.91 V was observed upon cooling the devices down to 125 K. This fits the picture in which the open‐circuit voltage is not limited by the work‐function difference of electrode materials used. The overall effect of temperature on solar‐cell parameters results in a positive temperature coefficient of the power conversion efficiency, which is 1.9 % at T = 320 K and 100 mW cm–2 (2.5 % at 0.7 mW cm–2). The almost‐linear variation of the short‐circuit current density with light intensity confirms that the internal recombination losses are predominantly of monomolecular type under short‐circuit conditions. We present evidence that the efficiency of this type of solar cell is limited by a light‐dependent shunt resistance. Furthermore, the electronic transport properties of the absorber materials, e.g., low effective charge‐carrier mobility with a strong temperature dependence, limit the photogenerated current due to a high series resistance, therefore the active layer thickness must be kept low, which results in low absorption for this particular composite absorber.  相似文献   

2.
Polymer solar cells have been fabricated from a recently synthesized low band‐gap alternating polyfluorene copolymer, APFO‐Green2, combined with [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) from organic solutions. External quantum efficiencies (EQEs) of the solar cells show an onset at 850 nm and a peak of > 10 % located at 650 nm, which corresponds to the extended absorption spectrum of the polymer. Photocurrent of 3.0 mA cm–2, photovoltage of 0.78 V, and power conversion efficiency of 0.9 % have been achieved in solar cells based on this new low‐bandgap polymer under the illumination of air mass 1.5 (AM 1.5) (1000 W m–2) from a solar simulator.  相似文献   

3.
We report a study of the effects of polymer optoelectronic properties on the performance of photovoltaic devices consisting of nanocrystalline TiO2 and a conjugated polymer. Three different poly(2‐methoxy‐5‐(2′‐ethylhexoxy)‐1,4‐phenylenevinylene) (MEH‐PPV)‐based polymers and a fluorene–bithiophene copolymer are compared. We use photoluminescence quenching, time‐of‐flight mobility measurements, and optical spectroscopy to characterize the exciton‐transport, charge‐transport, and light‐harvesting properties, respectively, of the polymers, and correlate these material properties with photovoltaic‐device performance. We find that photocurrent is primarily limited by the photogeneration rate and by the quality of the interfaces, rather than by hole transport in the polymer. We have also studied the photovoltaic performance of these TiO2/polymer devices as a function of the fabrication route and device design. Including a dip‐coating step before spin‐coating the polymer leads to excellent polymer penetration into highly structured TiO2 networks, as was confirmed through transient optical measurements of the photoinduced charge‐transfer yield and recombination kinetics. Device performance is further improved for all material combinations studied, by introducing a layer of poly(ethylene dioxythiophene) (PEDOT) doped with poly(styrene sulfonic acid) (PSS) under the top contact. Optimized devices incorporating the additional dip‐coated and PEDOT:PSS layers produced a short‐circuit current density of about 1 mA cm–2, a fill factor of 0.50, and an open‐circuit voltage of 0.86 V under simulated AM 1.5 illumination (100 mW cm–2, 1 sun). The corresponding power conversion efficiency under 1 sun was ≥ 0.4 %.  相似文献   

4.
HgTe nanocrystals are demonstrated to increase the photon‐harvesting efficiency of hybrid solar cells over a broad spectral region between 350 and 1500 nm. Devices combining two solar cell concepts, a solid‐state nanocrystal‐sensitized solar cell and a nanocrystal/polymer‐blend solar cell, are described. These devices give incident photon to current efficiencies up to 10 % at around 550 nm monochromatic irradiation and short‐circuit current densities of 2 mA cm–2 under simulated AM1.5 (100 mW cm–2) illumination (AM: air mass).  相似文献   

5.
A novel fullerene derivative, 1,1‐bis(4,4′‐dodecyloxyphenyl)‐(5,6) C61, diphenylmethanofullerene (DPM‐12), has been investigated as a possible electron acceptor in photovoltaic devices, in combination with two different conjugated polymers poly[2‐methoxy‐5‐(3′,7′‐dimethyloctyloxy)‐para‐phenylene vinylene] (OC1C10‐PPV) and poly[3‐hexyl thiophene‐2,5‐diyl] (P3HT). High open‐circuit voltages, VOC = 0.92 and 0.65 V, have been measured for OC1C10‐PPV:DPM‐12‐ and P3HT:DPM‐12‐based devices, respectively. In both cases, VOC is 100 mV above the values measured on devices using another routinely used fullerene acceptor, [6,6]‐phenyl‐C61 butyric acid methyl ester (PCBM). This is somewhat unexpected when taking into account the identical redox potentials of both acceptor materials at room temperature. The temperature‐dependent VOC reveals, however, the same effective bandgap (HOMOPolymer–LUMOFullerene; HOMO = highest occupied molecular orbital, LUMO = lowest unoccupied molecular orbital) of 1.15 and 0.9 eV for OC1C10‐PPV and P3HT, respectively, independent of the acceptor used. The higher VOC at room temperature is explained by different ideality factors in the dark‐diode characteristics. Under white‐light illumination (80 mW cm–2), photocurrent densities of 1.3 and 4.7 mA cm–2 have been obtained in the OC1C10‐PPV:DPM‐12‐ and P3HT:DPM‐12‐based devices, respectively. Temperature‐dependent current density versus voltage characteristics reveal a thermally activated (shallow trap recombination limited) photocurrent in the case of OC1C10‐PPV:DPM‐12, and a nearly temperature‐independent current density in P3HT:DPM‐12. The latter clearly indicates that charge carriers traverse the active layer without significant recombination, which is due to the higher hole‐mobility–lifetime product in P3HT. At the same time, the field‐effect electron mobility in pure DPM‐12 has been found to be μe = 2 × 10–4 cm2 V–1 s–1, that is, forty‐times lower than the one measured in PCBM (μe = 8 × 10–3 cm2 V–1 s–1).  相似文献   

6.
The relation between the nanoscale morphology and associated device properties in conjugated polymer/fullerene bulk‐heterojunction “plastic solar cells” is investigated. We perform complementary measurements on solid‐state blends of poly[2‐methoxy‐5‐(3,7‐dimethyloctyloxy)]‐1,4‐phenylenevinylene (MDMO‐PPV) and the soluble fullerene C60 derivative 1‐(3‐methoxycarbonyl) propyl‐1‐phenyl [6,6]C61 (PCBM), spin‐cast from either toluene or chlorobenzene solutions. The characterization of the nanomorphology is carried out via scanning electron microscopy (SEM) and atomic force microscopy (AFM), while solar‐cell devices were characterized by means of current–voltage (IV) and spectral photocurrent measurements. In addition, the morphology is manipulated via annealing, to increase the extent of phase separation in the thin‐film blends and to identify the distribution of materials. Photoluminescence measurements confirm the demixing of the materials under thermal treatment. Furthermore the photoluminescence of PCBM clusters with sizes of up to a few hundred nanometers indicates a photocurrent loss in films of the coarser phase‐separated blends cast from toluene. For toluene‐cast films the scale of phase separation depends strongly on the ratio of MDMO‐PPV to PCBM, as well as on the total concentration of the casting solution. Finally we observe small beads of 20–30 nm diameter, attributed to MDMO‐PPV, in blend films cast from both toluene and chlorobenzene.  相似文献   

7.
Novel conjugated organic dyes that have N,N‐dimethylaniline (DMA) moieties as the electron donor and a cyanoacetic acid (CAA) moiety as the electron acceptor were developed for use in dye‐sensitized nanocrystalline‐TiO2 solar cells (DSSCs). We attained a maximum solar‐energy‐to‐electricity conversion efficiency (η) of 6.8 % under AM 1.5 irradiation (100 mW cm–2) with a DSSC based on 2‐cyano‐7,7‐bis(4‐dimethylamino‐phenyl)hepta‐2,4,6‐trienoic acid (NKX‐2569): short‐circuit photocurrent density (Jsc) = 12.9 mA cm–2, open‐circuit voltage (Voc) = 0.71 V, and fill factor (ff) = 0.74. The high performance of the solar cells indicated that highly efficient electron injection from the excited dyes to the conduction band of TiO2 occurred. The experimental and calculated Fourier‐transform infrared (FT‐IR) absorption spectra clearly showed that these dyes were adsorbed on the TiO2 surface with the carboxylate coordination form. A molecular‐orbital calculation indicated that the electron distribution moved from the DMA moiety to the CAA moiety by photoexcitation of the dye.  相似文献   

8.
A fundamental limitation of the photocurrent of solar cells based on a blend of poly(2‐methoxy‐5‐(3′,7′‐dimethyloctyloxy)‐p‐phenylene vinylene) (MDMO‐PPV) and [6,6]‐phenyl C61‐butyric acid methyl ester (PCBM) is caused by the mobility of the slowest charge‐carrier species, the holes in the MDMO‐PPV. In order to allow the experimentally observed photocurrents electrostatically, a hole mobility of at least 10–8 m2 V–1 s–1 is required, which exceeds the observed hole mobility in pristine MDMO‐PPV by more than two orders of magnitude. However, from space‐charge‐limited conduction, admittance spectroscopy, and transient electroluminescence measurements, we found a hole mobility of 2 × 10–8 m2 V–1 s–1 for the MDMO‐PPV phase in the blend at room temperature. Consequently, the charge‐carrier transport in a MDMO‐PPV:PCBM‐based solar cell is much more balanced than previously assumed, which is a necessary requirement for the reported high fill factors of above 50 %.  相似文献   

9.
A high‐performance hybrid polymeric photorefractive nanocomposite operating at the telecommunications wavelength of 1.34 μm is presented. The photorefractive nanocomposite is sensitized with PbS nanocrystals synthesized via a hot colloidal route. Photoconductivity experiments confirm and quantify the photocharge‐generation quantum efficiency of the nanocrystals. A pronounced two‐beam coupling effect at the operation wavelength is observed, leading to very high optical gains. Temporal evolution of the photorefractive growth process is also studied.  相似文献   

10.
Hydrolysis of titanium(IV ) isopropoxide (TTIP) is a well‐known method for the fabrication of TiO2. Normally it is made via a sol–gel reaction in the presence of water. In this paper we report on the preparation of flat TiO2 films for conjugated polymer/TiO2 photovoltaic cells, from a TTIP/isopropanol solution. It is shown that the morphological structure of the TiO2 film is strongly dependent on the relative humidity during spin‐coating of the TTIP/isopropanol solution. In bilayer devices consisting of TiO2/poly[2‐methoxy‐5‐(3′,7′‐dimethyloctyloxy)‐1,4‐phenylene vinylene] (MDMO‐PPV), a low relative humidity (< 25 %, room temperature) is needed in order to form smooth, transparent TiO2 films. Increasing the relative humidity results in porous TiO2 films with a high surface roughness, which leads to shunted devices. Apart from bilayer devices, bulk‐heterojunction (BHJ) hybrid TiO2:MDMO‐PPV photovoltaic cells have been made, by spin‐coating a mixture of TTIP and MDMO‐PPV in toluene. Again a strong relation was found between the relative humidity during spin‐coating and the current–voltage characteristics of the devices. However, in contrast to the bilayer devices, the best BHJ devices were made at higher relative humidity. The observed performance dependence on relative humidity is discussed in relation to the TiO2 morphology.  相似文献   

11.
The surface of the solution‐processed methylammonium lead tri‐iodide (CH3NH3PbI3) perovskite layer in perovskite hybrid solar cells (pero‐HSCs) tends to become rough during operation, which inevitably leads to deterioration of the contact between the perovskite layer and the charge‐extraction layers. Moreover, the low electrical conductivity of the electron extraction layer (EEL) gives rises to low electron collection efficiency and severe charge carrier recombination, resulting in energy loss during the charge‐extraction and ‐transport processes, lowering the efficiency of pero‐HSCs. To circumvent these problems, we utilize a solution‐processed ultrathin layer of a ionomer, 4‐lithium styrenesulfonic acid/styrene copolymer (LiSPS), to re‐engineer the interface of CH3NH3PbI3 in planar heterojunction (PHJ) pero‐HSCs. As a result, PHJ pero‐HSCs are achieved with an increased photocurrent density of 20.90 mA cm?2, an enlarged fill factor of 77.80%, a corresponding enhanced power conversion efficiency of 13.83%, high reproducibility, and low photocurrent hysteresis. Further investigation into the optical and electrical properties and the thin‐film morphologies of CH3NH3PbI3 with and without LiSPS, and the photophysics of the pero‐HSCs with and without LiSPS are shown. These demonstrate that the high performance of the pero‐HSCs incorporated with LiSPS can be attributed to the reduction in both the charge carrier recombination and leakage current, as well as more efficient charge carrier collection, filling of the perforations in CH3NH3PbI3, and a higher electrical conductivity of the LiSPS thin layer. These results demonstrate that our method provides a simple way to boost the efficiency of pero‐HSCs.  相似文献   

12.
The formation of fiber‐like colloidal particles of the amino acid lysine complexed with Keggin ions is demonstrated. The lysine–phosphotungstic acid (PTA) colloidal particles act as excellent templates for the synthesis and assembly of gold nanoparticles wherein the lysine‐PTA complex acts as a UV‐switchable reducing agent for gold ions. This novel bio‐organic–inorganic template shows excellent potential as a regulated nanoreactor for application in programmed nanoparticle synthesis and assembly in a single step.  相似文献   

13.
We report on solution‐processed hybrid solar cells consisting of a nanocrystalline inorganic semiconductor, CuInS2, and organic materials. Synthesis of quantized CuInS2 nanoparticles was performed using a colloidal route, where the particle surface was shielded by an organic surfactant. First attempts were made to use nanocrystalline CuInS2 with fullerene derivatives to form flat‐interface donor–acceptor heterojunction solar cells. We investigated also bulk heterojunctions by replacing the CuInS2 single layer by a blend of CuInS2 and p‐type polymer (PEDOT:PSS; poly(3,4‐ethylenedioxythiophene:poly(styrene sulfonic acid) in the same cell configuration. Bulk heterojunction solar cells show better photovoltaic response with external quantum efficiencies up to 20 %.  相似文献   

14.
Solar cells based on a poly(p‐phenylene vinylene) (PPV) derivative and zinc oxide nanoparticles can reach a power conversion efficiency of 1.6 %. The transport of electrons and holes in these promising devices is characterized and it is found that the electron mobility is equal to 2.8 × 10–9 m2 V–1 s–1, whereas the hole mobility amounts to 5.5 × 10–10 m2 V–1 s–1. By modeling the current–voltage characteristics under illumination it is found that the performance of PPV/zinc oxide solar cells is limited by the charge‐carrier mobilities. Subsequently, how to further improve the efficiency is discussed.  相似文献   

15.
16.
A novel family of soluble conjugated dendritic oligothiophenes (DOTs) as monodisperse 3D macromolecular architectures was characterized with respect to optical and redox properties in solution and in solid films. Band gaps of 2.5–2.2 eV, typical for organic semiconductors, were determined as well as HOMO/LUMO energy levels ideal for efficient electron transfer to acceptors such as [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) identifying them as suitable materials for solar cell applications. Solution‐processed bulk‐heterojunction solar cells using DOTs as electron donor and PCBM as acceptor were prepared and investigated. High open‐circuit voltages VOC of 1.0 V and power‐conversion efficiencies up to 1.72% were obtained for the DOT‐based devices. The higher generations DOTs provide the highest efficiencies. Based on the monodispersity of the DOTs, an analysis of the molar ratio between donor and acceptor in the blended film was possible leading to an optimal value of five to six thiophene units per PCBM.  相似文献   

17.
The power conversion efficiency of organic and hybrid solar cells is commonly reduced by a low open‐circuit voltage (VOC). In these cases, the VOC is significantly less than the energy of the lowest energy absorbed photon, divided by the elementary charge q. The low photovoltage originates from characteristically large band offsets between the electron donor and acceptor species. Here a simple method is reported to systematically tune the band offset in a π‐conjugated polymer–metal oxide hybrid donor–acceptor system in order to maximize the VOC. It is demonstrated that substitution of magnesium into a zinc oxide acceptor (ZnMgO) reduces the band offset and results in a substantial increase in the VOC of poly(3‐hexylthiophene) (P3HT)–ZnMgO planar devices. The VOC is seen to increase from 500 mV at x = 0 up to values in excess of 900 mV for x = 0.35. A concomitant increase in overall device efficiency is seen as x is increased from 0 to 0.25, with a maximum power‐conversion efficiency of 0.5 % obtained at x = 0.25, beyond which the efficiency decreases because of increased series resistance in the device. This work provides a new tool for understanding the role of the donor–acceptor band offset in hybrid photovoltaics and for maximizing the photovoltage and power‐conversion efficiency in such devices.  相似文献   

18.
The catalytic activity of hybrid organic–inorganic silica glasses doped with the ruthenium species tetra‐n‐propylammonium perruthenate (TPAP) in the aerial oxidation of alcohols to carbonyl compounds, either in toluene or in dense‐phase CO2, substantially increases with time several months after the xerogels' preparation, yielding the most active ruthenium‐based aerobic‐oxidation catalysts reported thus far. The doped sol–gels are living materials, and an explanation of the observed reactivity enhancement is given, which is thought to have general validity for future applications to a wide variety of relevant heterogeneous processes.  相似文献   

19.
20.
The potential and application of X‐ray absorption spectroscopy (XAS) for structural investigations of organic–inorganic hybrid materials, with a special emphasis on systems consisting of inorganic building blocks (clusters) embedded into polymer backbones, is extensively reviewed. In the first part of the paper, the main features of organic–inorganic hybrid materials, their classification, the synthetic approaches for their preparation, and their applications are concisely presented, whereas the particular issues related to their characterization are discussed in more detail. In the second section of the paper, the principles and the theoretical background of the XAS method, including experimental design, data reduction, evaluation, analysis, and interpretation are described and discussed. Examples of potentialities of the method for the short‐range structural investigation of inorganic nanostructures in hybrids are provided, and the state‐of‐the‐art in the field of hybrid materials is reviewed. In the third part, six different case studies belonging to our past and present experience in this field are presented and discussed, with a particular focus on their XAS investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号